P.I. Kogut, T.N. Rudyanova

Dnipropetrovsk National University, Dnipropetrovsk State Finance Academy

ON THE WEAKLY-* DENSE SUBSETS IN $L^{\infty}(\Omega)$

Abstract. In this paper we study the density property of the compactly supported smooth functions in the space $L^\infty(\Omega)$. We show that this set is dense with respect to the weak-* convergence in variable spaces.

Let Ω be an open bounded domain in R^2 with a Lipschitz boundary $\partial\Omega$. Throughout the paper we suppose that Ω is a measurable set in the sense of Jordan. Let $C_0^\infty(\Omega)$ be the set of smooth functions with a compact support in Ω . It is well known that the set $C_0^\infty(\Omega)$ is not dense in $L^\infty(\Omega)$, that is, the assertion

«... for any
$$f \in L^{\infty}(\Omega)$$
 can be found a sequence $\{u_k \in C_0^{\infty}(\Omega)\}_{k=1}^{\infty}$ such that $u_k \to f$ strongly in $L^{\infty}(\Omega)$ as $k \to \infty$...»

is not true, in general. So, the main question we are going to study in this paper is the following: how can the density concept of the locally convex space C_0^{∞} be interpreted in $L^{\infty}(\Omega)$? As we will see later it can be done through the concept of the weak- * convergence in the variable spaces.

To begin with, we define the so-called graph-like structure on the domain Ω . Let Y be the following set $Y = [0;1)^2 = [0;1) \times [0;1)$.

Definition 1. We say that the set Y is the cell of periodicity for some graph F on \mathbb{R}^2 if Y contains a «star»-structure such that:

- (i) all edges of this structure have a common point $M \in \text{int } Y$; each edge is a line-segment and all end-points of these edges belong to the boundary of Y;
- (ii) in the set of end-points (vertices) there exist pairs (M_i, M_k) such that

$$x_1^{M_i} = x_1^{M_k}$$
 or $x_2^{M_i} = x_2^{M_k}$.

As follows from the condition (ii) we admit the existence of isolated vertices in the Y-periodic graph F on R^2 . Let $\varepsilon \in E = (0, \varepsilon^0]$ be a small parameter. We assume that ε varies in a strictly decreasing sequence of positive numbers which converge to 0.

Definition 2. We say that F_{ε} is an ε -periodic graph on \mathbb{R}^2 if

$$F_{\varepsilon} = \varepsilon F = \{ \varepsilon x : x \in F \}.$$

It is clear that the cell of periodicity for Ω_{ε} is εY . Let

$$I^{ed} = \{I_j, j = 1, 2, \dots, K\}$$
 (1)

be the set of all edges on Y. Let Ω be an open bounded domain in \mathbb{R}^2 with a Lipschitz boundary such that

$$\Omega = \{(x_1, x_2) : x_1 \in \Gamma_1, 0 < x_2 < \gamma(x_1)\},\tag{2}$$

[©] P.I. Kogut, T.N. Rudyanova, 2008

where $\Gamma_1 = (0,a)$, $\gamma \in C^1([0,a])$, and $0 < \gamma_0 = \inf_{x_1 \in [0,a]} \gamma(x_1)$. Then $\partial \Omega = \Gamma_1 \cup \Gamma_2$, where $\Gamma_2 = \partial \Omega \setminus \Gamma_1$.

Definition 3. We say that Ω_{ε} has an ε -periodic graph-like structure if $\Omega_{\varepsilon} = \Omega \cap F_{\varepsilon}$.

Our next step is to describe the geometry of the set Ω_{ε} in terms of so-called singular measures in \mathbb{R}^2 . To do so, we will follow the Zhikov's approach ([3]-[5]).

For every segment $I_i \in I^{ed}$, i = 1, 2, ..., K we denote by μ_i its corresponding Lebesgue measure. Now we define the Y-periodic Borel measure μ in \mathbb{R}^2 as follows

$$\mu = \sum_{i=1}^{K} g_i \cdot \mu_i \text{ on } Y;$$
 (3)

where $g_{1,g_{2,...,g_{K}}}$ are non-negative weights such that $\int_{V} d\mu = 1$.

Thus the support of the measure μ is the union of all edges $I_i \in I^{ed}$, each of which is a 1-dimensional manifold in R^2 . Since the homothetic contraction of the plane at ε^{-1} takes the grid F to $F_{\varepsilon} = \varepsilon F$, we introduce a «scaling» ε -periodic measure μ_{ε} as follows

$$\mu_{\varepsilon}(B) = \varepsilon^2 \mu(\varepsilon^{-1}B) \text{ for every Borel set } B \subset \mathbb{R}^2.$$
 (4)

Then

$$\int\limits_{\mathcal{E}^{\prime}} d\mu_{\mathcal{E}} = \varepsilon^2 \int\limits_{\mathcal{V}} d\mu = \varepsilon^2$$

Hence the measure μ_{ε} is weakly convergent to the Lebesgue measure L^2 , that is

$$d\mu_{\varepsilon} \xrightarrow{w} dx \Leftrightarrow \lim_{\varepsilon \to 0} \int_{R^{2}} \varphi \, d\mu_{\varepsilon} = \int_{R^{2}} \varphi \, dx \tag{5}$$

for every $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ (see Zhikov [3] for a proof).

We define the space $L^{\infty}(\Omega, d\mu_{\varepsilon})$ in the way: $y_{\varepsilon} \in L^{\infty}(\Omega, d\mu_{\varepsilon})$ if and only if y_{ε} is a μ_{ε} -measurable function on Ω and there exists a constant M > 0 such that $|y_{\varepsilon}(x)| \leq M$ μ_{ε} -every where in Ω .

Definition 4. We say that a sequence $\{y_{\varepsilon} \in L^{\infty}(\Omega, d\mu_{\varepsilon})\}_{\varepsilon \to 0}$ is uniformly bounded if $\sup_{\varepsilon > 0} \|y_{\varepsilon}\|_{L^{\infty}(\Omega, d\mu_{\varepsilon})} < +\infty$.

Definition 5. A uniformly bounded sequence $\{y_{\varepsilon} \in L^{\infty}(\Omega, d\mu_{\varepsilon})\}_{\varepsilon \to 0}$ is said to be weakly-* convergent in the variable space $L^{\infty}(\Omega, d\mu_{\varepsilon})$ to $y \in L^{\infty}(\Omega)$ if

$$\lim_{\varepsilon \to 0} \int_{\Omega} \varphi y_{\varepsilon} d\mu_{\varepsilon} = \int_{\Omega} \varphi y dx \text{ for every } \varphi \in C_0^{\infty}(\Omega)$$

(in the symbols $y_{\varepsilon} \xrightarrow{w^*} y$).

We begin with the following result:

Theorem 6. Let $\{y_{\varepsilon}\}_{\varepsilon\to 0}$ be any bounded sequence in the variable space $L^{\infty}(\Omega,d\mu_{\varepsilon})$. Then this sequence is relatively compact with respect to the weak* convergence in $L^{\infty}(\Omega,d\mu_{\varepsilon})$.

Proof. Let us set

$$l_{\varepsilon}(\varphi) = \int_{\Omega} y_{\varepsilon} \varphi \, d\mu_{\varepsilon} \quad \varphi \in C_0^{\infty}(\Omega).$$

Then, by the Hölder inequality, we have

$$|l_{\varepsilon}(\Omega)| \le \int_{\Omega} |y_{\varepsilon}| |\varphi| d\mu_{\varepsilon} \le ||y_{\varepsilon}||_{L^{\infty}(\Omega, d\mu_{\varepsilon})} \int_{\Omega} |\varphi| d\mu_{\varepsilon}.$$
 (6)

Hence

$$|l_{\varepsilon}(\varphi)| \leq ||y_{\varepsilon}||_{L^{\infty}(\Omega,d\mu_{\varepsilon})} ||\varphi||_{C(\Omega)} \mu_{\varepsilon}(K),$$

where by K we denote a support of φ in Ω . Since $d\mu_{\varepsilon} \xrightarrow{w} dx = dL^2$ in the space of Radone measures and

$$\limsup_{\varepsilon \to 0} \mu_{\varepsilon}(K) \le L^{2}(K) \text{ for every compact subset of } \Omega$$

(see Zhikov [3]), it follows that

$$\left|l_{\varepsilon}(\varphi)\right| \leq 2 ||\varphi||_{C(\Omega)} \mu(K) \sup_{\varepsilon > 0} ||y_{\varepsilon}||_{L^{\infty}(\Omega, d\mu_{\varepsilon})}$$

for $\varepsilon > 0$ small enough. On the other hand, the set

$$T(K) = \{ \varphi \in C_0^{\infty}(\Omega), \sup \varphi \subseteq K \}$$

is separable with respect to the norm $||\varphi||_{C(\Omega)}$. Then, due to the Cantor diagonal method, it can be easy proved that the sequence $\{l_{\varepsilon}(\cdot)\}_{\varepsilon\to 0}$ consists a subsequence which is pointwise convergent on T(K). As a result, there exists a subsequence of values $\varepsilon_i\to 0$ such that

$$\lim_{j \to \infty} l_{\varepsilon_j}(\varphi) = l(\varphi) \quad \forall \varphi \in C_0^{\infty}(\Omega). \tag{7}$$

Taking into account the inequality (6), we conclude

$$|l(\varphi)| \leq \sup_{\varepsilon > 0} ||y_{\varepsilon}||_{L^{\infty}(\Omega, d\mu_{\varepsilon})} \lim_{\varepsilon \to 0} \int_{\Omega} \varphi |d\mu_{\varepsilon} = \sup_{\varepsilon > 0} ||y_{\varepsilon}||_{L^{\infty}(\Omega, d\mu_{\varepsilon})} \int_{\Omega} \varphi |dx.$$

So, $l(\cdot)$ is the linear continuous functional on $L^1(\Omega)$. Hence, the following representation holds true

$$l(\varphi) = \int_{\Omega} \upsilon \varphi \, dx$$

where ν is some element of $L^{\infty}(\Omega)$. Thus, in view of (7), ν is a weak-* limit of the subsequence $\{y_{\varepsilon_i}\}_{j=1}^{\infty}$ in the variable space $L^{\infty}(\Omega, d\mu_{\varepsilon})$.

Now we are in a position to state the main result of our paper.

Theorem 7. For any element $y \in L^{\infty}(\Omega)$ there can be found a sequence of smooth functions $\{y_{\varepsilon} \in C_0^{\infty}(\Omega)\}_{{\varepsilon}>0}$ satisfying the conditions:

$$|y_{\varepsilon}| \le |y||_{L^{\infty}(\Omega)}$$
 for every $\varepsilon \in E$; $y_{\varepsilon} \xrightarrow{w^{\bullet}} y$ in $L^{\infty}(\Omega, d\mu_{\varepsilon})$ as $\varepsilon \to 0$ (8)

Proof. Let y be any element of $L^{\infty}(\Omega)$. We set $c = ||y||_{L^{\infty}(\Omega)}$. Since $L^{\infty}(\Omega) \subset L^{2}(\Omega)$ and the space of smooth functions $C^{\infty}(\Omega)$ is dense in $L^{2}(\Omega)$ it follows that there is a sequence $\{y_{\varepsilon} \in C^{\infty}(\Omega)\}$ satisfying the conditions:

$$|y_{\varepsilon}| \le c$$
 for every $\varepsilon \in E$; $||y_{\varepsilon} - y||_{L^{2}(\Omega)} \to 0$ as $\varepsilon \to 0$.

Therefore

$$\lim_{\varepsilon \to 0} \int_{\Omega} \varphi y_{\varepsilon} dx = \int_{\Omega} \varphi y dx \text{ for every } \varphi \in C_0(\overline{\Omega})$$
 (9)

Further we note that $y_{\varepsilon} \in L^{\infty}(\Omega, d\mu_{\varepsilon})$ (as a smooth function) and hence $|y_{\varepsilon}| \leq c \mu_{\varepsilon}$ almost everywhere. We have to show that $y_{\varepsilon} \to y$ weakly-* in $L^{\infty}(\Omega, d\mu_{\varepsilon})$, i.e.

$$\int_{\Omega} \varphi y_{\varepsilon} d\mu_{\varepsilon} \to \int_{\Omega} \varphi y dx \text{ for every } \varphi \in C_0^{\infty}(R^2).$$
 (10)

We partition the domain Ω into the sets εY_j , where Y_j is periodic covering of R^2 by the cell Y. Then

$$\int \varphi y_{\varepsilon} d\mu_{\varepsilon} = \sum_{j} \int \varphi y_{\varepsilon} d\mu_{\varepsilon} + \sum_{i} \int \varphi y_{\varepsilon} d\mu_{\varepsilon}$$

$$\Omega \cap \varepsilon Y_{j}$$
(11)

where the second sum is calculated over the set of the boundary squares such that $\varepsilon Y_j \cap \partial \Omega \neq 0$. By Mean Value Theorem, for each index j there exist points x_j in the cells εY_j such that

$$\int_{\varepsilon Y_i} \varphi \, y_{\varepsilon} d\mu_{\varepsilon} = \varphi(x_j) y_{\varepsilon}(x_j) \int_{\varepsilon Y_i} d\mu_{\varepsilon} = \varphi(x_j) y_{\varepsilon}(x_j) \varepsilon^2 \int_{Y} d\mu = \varphi(x_j) y_{\varepsilon}(x_j) \varepsilon^2 \ \forall j \ .$$

Then in view of (11), we get

$$\int_{\Omega} \varphi y_{\varepsilon} d\mu_{\varepsilon} = \left(\sum_{j} \varphi(x_{j}) y_{\varepsilon}(x_{j}) \varepsilon^{2} - \int_{\Omega} \varphi y_{\varepsilon} dx \right) + \sum_{\Omega \cap \varepsilon Y_{j}} \varphi y_{\varepsilon} d\mu_{\varepsilon} + \int_{\Omega} \varphi y_{\varepsilon} dx =$$

$$= I_{1} + I_{2} + \int_{\Omega} \varphi y_{\varepsilon} dx.$$
(12)

Note that

$$|I_2| = \left| \sum_{\Omega \cap \varepsilon Y_j} \int \varphi y_{\varepsilon} d\mu_{\varepsilon} \right| \leq \sup_{j \in D(\varepsilon)} \left(\sup_{x \in \Omega \cap \varepsilon Y_j} |\varphi| |y_{\varepsilon}| \right) \varepsilon^2 D(\varepsilon) \leq c ||\varphi||_{C(\Omega)} \varepsilon^2 D(\varepsilon),$$

where $D(\varepsilon)$ is the quantity of the 'boundary' squares, and $\varepsilon^2 D(\varepsilon) \to 0$ by Jordan's measurability property of the set $\partial \Omega$. Hence $I_2 \to 0$ as ε tends to zero.

Now we show that $I_1 \rightarrow 0$. To do so, we note that

$$\begin{aligned} & |I_1| = \left| \sum_{j} \varphi(x_j) y_{\varepsilon}(x_j) \varepsilon^2 - \int_{\Omega} \varphi y_{\varepsilon} dx \right| \leq \left| \sum_{j} \left(\varphi(x_j) y_{\varepsilon}(x_j) - \frac{1}{\varepsilon^2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right) \varepsilon^2 \right| + \left| \sum_{\Omega \cap \varepsilon Y_j} \varphi y_{\varepsilon} dx \right| \leq \\ & \leq \sum_{j} \left| \varphi(x_j) y_{\varepsilon}(x_j) - \frac{1}{\varepsilon^2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right| \varepsilon^2 + c ||\varphi||_{C(\Omega)} \varepsilon^2 D(\varepsilon). \end{aligned}$$

Let us suppose the converse, that is,

$$\lim_{\varepsilon \to 0} \sum_{j} \left| \varphi(x_{j}) y_{\varepsilon}(x_{j}) - \varepsilon^{-2} \int_{\varepsilon Y_{j}} \varphi y_{\varepsilon} dx \right| \varepsilon^{2} > 0.$$

Since Ω is bounded, it is contained in a number of squares εY_j smaller than C/ε^2 , where C does not depend on ε . So, there exist a constant $C^*>0$ and a value $\varepsilon^*>0$ such that

$$\left| \varphi(x_j) y_{\varepsilon}(x_j) - \varepsilon^{-2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right| \ge C^*$$
(13)

(for an infinite number of indices j for every fixed ε). Hence the extremely wild oscillations is present in the sequence $\{\varphi y_{\varepsilon}\}$. However ([1],[2]), if we have the very rapid fluctuations in the functions $\{\varphi y_{\varepsilon}\}$, then the convergence $\varphi y_{\varepsilon} \to \varphi y$ almost everywhere in Ω is excluded.

This fact immediately reflects the failure of the strong convergence $\varphi y_{\varepsilon} \to \varphi y$ in $L^2(\Omega)$ as $\varepsilon \to 0$. Indeed, by the initial assumptions, we have

$$|y_{\varepsilon}| \le c$$
 for every $\varepsilon \in E$, $\varphi y_{\varepsilon} \to \varphi y$ in $L^{1}(\Omega)$,
and $||\varphi y_{\varepsilon} - \varphi y||_{L^{1}(\Omega)} \to 0$ as $\varepsilon \to 0$ for any $\varphi \in C_{0}^{\infty}(\mathbb{R}^{2})$.

Let A be any subset of Ω with $|A| \neq 0$. Then, by Valadier's Theorem [2], $\varphi y_{\varepsilon} \to \varphi y$ strongly if and only if the following criterion is satisfied: $\forall \delta > 0 \ \exists \varepsilon^0 > 0, \exists B \subset A$ with $|B| \neq 0$ such that

$$|B|^{-1} \int_{B} |\varphi y_{\varepsilon} - |B|^{-1} \int_{B} |\varphi y_{\varepsilon}| dx dx < \delta \quad \forall \varepsilon < \varepsilon^{0}.$$

Hence, for any $\varepsilon < \varepsilon^0$ there is a square $\varepsilon Y_i \subset B$ such that

$$\varepsilon^{-2} \int_{\varepsilon Y_{j}} \left| \varphi y_{\varepsilon} - \varepsilon^{-2} \int_{\varepsilon Y_{j}} \varphi y_{\varepsilon} dx \right| dx < \delta.$$

Since the functions φy_{ε} are continuous and uniformly bounded it follows that for any point x_i of εY_i satisfying the condition

$$\varphi(x_j)y_{\varepsilon}(x_j) - \varepsilon^{-2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \neq 0.$$

there can be found a constant $A_* > 0$ satisfying

$$\varepsilon^{-2} \int_{\varepsilon Y_j} \left| \varphi y_{\varepsilon} - \varepsilon^{-2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right| dx = A_* \left| \varphi(x_j) y_{\varepsilon}(x_j) - \varepsilon^{-2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right|.$$

Hence

$$\left| \varphi(x_j) y_{\varepsilon}(x_j) - \varepsilon^{-2} \int_{\varepsilon Y_j} \varphi y_{\varepsilon} dx \right| < A_*^{-1} \delta$$

and we come into conflict with (13). So, our supposition was wrong and we get

$$\lim_{\varepsilon \to 0} \sum_{j} \left| \varphi(x_{j}) y_{\varepsilon}(x_{j}) - \varepsilon^{-2} \int_{\varepsilon Y_{j}} \varphi y_{\varepsilon} dx \right| \varepsilon^{2} = 0.$$

As a result, we have $I_1 \rightarrow 0$. Thus, summing up the results obtained above and the relations (12), (9), we come to the desired identity (10).

References

- 1. Evans L., Weak Convergence methods for Nonlinear Partial Differential Equations, Regional Conference Seriaes in Mathematics, No. 74, AMS, 1990.
- 2. Valadier M., Oscillations et compacité forte dans L^1 , Sém. Anal. Convexe, 21(1991), 7.1-7.10.
- 3. Zhikov V.V., On an extension of the method of two-scale convergence and its applications, Sbornik: Mathematics, 191:7(2000), 973-1014.
- 4. Zhikov V.V., Weighted Sobolev spaces, Sbornik: Mathematics, 189:8(1998), 27-58.
- 5 Zhikov V.V., Homogenization of elastitic problems on singular structures, Izvestija: Math., 66:2(2002), 299-365.

Надійшла до редколегії 14.01.2008