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ON THE WEAKLY-* DENSE SUBSETS IN L*(Q)

Abstract. In this paper we study the density property of the compactly supported smooth

functions in the space L (Q2). We show that this set is dense with respect to the weak-* convergence
in variable spaces.

Let Q be an open bounded domain in R? with a Lipschitz boundary oX).
Throughout the paper we suppose that Q) is a measurable set in the sense of Jordan. Let

Co'(Q) be the set of smooth functions with a compact support in Q. It is well known
that the set C (Q) is not dense in L°(Q2), that is, the assertion |
«...forany feL”(Q)can be found a sequence {u; € Cy (Q)J5; such
that u; ~» f strongly in L°(Q) as k > o ...»
is not true, in general. So, the main question we are going to study in this paper is the
following: how can the density concept of the locally convex space C{° be interpreted in

L¥(Q)? As we will see later it can be done through the concept of the weak- *

convergence in the variable spaces.

To begin with, we define the so-called graph-like structure on the domain Q . Let
Y be the following set ¥ = [0;1)* =[0;1) x [0;1).

Definition 1. We say that the set Y s the cell of perzodlcuy for some graph F on

R? ifY contains a «star»-structure such that:
(i) all edges of this structure have a common point M € intY ;! each edge is a line-
segment and all end-points of these edges belong to the boundary of Y ;
(ii) in the set of end-points (vertices):there exist pairs (M;; M ) such that

le‘leM" or xg/j’—xéw". o

As follows from the condition (ii) we admit the existence of isolated vertices in the
Y -periodic graph F on R Let se E=( 0,6 /] be a small parameter. We assume that
& -varies in a strictly decreasing sequence of positive numbers which converge to 0.
Definition 2. We say that F,, is an ¢ -pericdic graph on R? if
Fo=eF={ex:xeF}.
It is clear that the cell of periodicity for Q is €1 . Let
I =(1;j=12..K} )

be the set of all edges on Y . Let Q be an open bounded domain in R? witha Lipschitz
boundary such that

Q={(x,%): 5 e 0<x <yx)}, 0)
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where I't =(0,a), y€C'([0,a]), and 0<yy=infycr0q77(%). Then 8Q =TI Uy,
where I'y =0Q\T. _

Definition 3. We say that Q. has an & -periodic graph-like structure if
Q. =QNF,.

Our next step is to describe the geometry of the set Qe in terms of so-called

singular measures in R?. To do so, we will follow the Zhikov's approach ([3]-[S]).

Iea’

For every segment [;e I, i=12,..,K we denote by 4 its corresponding

Lebesgue measure. Now we define the Y -periodic Borel measure 4 in R? as follows

K
p=YgiponY; 3)
i=1

where g1 g, gk are non-negative weights such that _" du=1.
Y

Thus the support of the measure u is the union of all edges /; € 1°?, each of
which is a 1-dimensional manifold in R?. Since the homothetic contraction of the plane

at 7! takes the grid F to F, = &F , we introduce a «scaling» e-pertodtc measure 4,
as follows - ‘ ‘

A . pe(B)= ,572 ,u(e“-lB) for every Borel set B c R?. -4
Then o L

j'd;zgf- &% jd,u &2
gY Py

Hence the measure ,u‘e is weakly convergent to the Lebesgue measure L2 that is
dyg--—-)dx¢:> lzm _[(Dd,us I{pdx (8

&0 2

,: S R CRE R

for every p e Cg'( R? ) (see ZhlkOV [3] for a proof)

We define the space L°(Q,du,) in the way: y, e L°(Q,du,) if and only if y, is
a 1, -measurable function on O and there exists a constant M >0 such that | y,(,)|< M

Mg -every where in Q.

Definition 4. We say that a sequence {y, € L°(Q,du,)} ;.o is uniformly bounded
if Sups>0“}’£ u @ d,ug)< o0,

Definition 5. 4 uniformly bounded sequence {y, € L” (Q,d,ug ) } 0 is said to be
weakly-* convergent in the variable space L*(Q,du,) to y € L*(Q) if

lim [pyg du, = [pydx for every pe CF(Q)
a-—>OQ Q

(in the symbols y, -2 5y).
We begin with the following result:
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Theorem 6. Let {y.} .o be .any bounded sequence in the variable space
L“’(Q,d,ug). Then this sequence is relatively compact with respect to the weak-

* convergence in L°(Q,du,).
Proof. Let us set

ls(¢)= &2)’5 pdu; pe CSO(Q)'
Then, by the Holder inequality, we have

Ile(Qx < '[rzl.)’engvld.us s “}’s“[‘w(g’dyg)i)l ¢Idzus . ()]
Hence
lls (¢X s “y e “ °(Qudu, )“¢“c(g)l‘a (X),

where by K we denote a support of ¢ in Q. Since dy, —~—>dx = dI? in the space of
Radone measures and

limsup u(K) < ? (K) for every compact subset of Q

£—0
(see Zhikov [3}), it follows that

le(@) <2110 lcca) #(K)sup |l ye o g 4
| £>0 e ’

for £ > 0 small enough. On the other hand, the set

T(K)={peC5(Q).suppc K}
is separable with respect to the norm [|¢|lc(q). Then, due to the Cantor diagonal
method, it can be easy proved that the séquence {lg ( )}8_90 consists a subsequence which
is pointwise convergent on T(K). As a result, there exists a subsequence of values
&; — 0 such that e

J
lim I, (9)=l(p) VpeCF(Q). o
Jjoo
Taking into account the inequality (6), we conclude

1) <supl| P llo ey o lim [0 dptg = supl] g | .
l l e (Q,dps)g__)ofj; e e (Q,dyg)g

So, I(*) is the linear continuous functional on L'(Q). Hence, the following
representation holds true

()= [vodx
Q

where v is some element of L°(Q). Thus, in view of (7), v is a weak-* limit of the
subsequence { i1 in the variable space L” (Q,dy, ).

Now we are in a position to state the main result of our paper.
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Theorem 7. For any element y € L°(Q)) there can be found a sequence of smooth

functions { y, € Cy (Q))}z-0 Satisfying the conditions:

el Sl 2 llm g, Jor every e € E; ye—"—>y in L°(Qudy;) as & —0

6

Proof let y be any element of L*°(Q). We set c:I]ylle(Q). Since

[°(Q)c I*(Q) and the space of smooth functions C®(Q) is dense in () it
follows that there is a sequence {y, € C*(Q)} satisfying the conditions:
[ve|<c forevery e E; 176 =¥l 0 as £ 0.

Therefore
lim j¢y£dx Iqaydx for every (peCo(Q) C))

&0 Q

Further we note that y, el (Q.,du,) (as a smooth function) and hence | ySISC He-

almost everywhere. We have to show that y, — y weakly-* in L>(Q,du, ), i.e.
Iwgdyg - quydx for every o e CX(R?). (10)
Q Q- ’

We partition the domain Q into the sets £¥;, where Y; is periodic covering of R? by

the cell Y. Then ’ ‘ : '

[oyedu, =3 Iwyg d; +Z [eye dug (11)
Q CodEy s Qe

where the second sum js calculated over the set of the 'boundary squares such that
gY; MoQ#0. By Mean Value Theorem for each mdex J there ex1st pomts X; m thg

cells 6‘Y such that : ,
[ @yedus =0(x;)ys(x;) [ duy=0(x;)ys(x; )82 Idﬂ o(x; )ya(xj)s V).
€Y} &Y;

Then in view of (11), we get

fovedy, = {Zw( X )yg(x )8 —Icvyg }rZ [ ovedus + [oppdx=
Q ) one, Q (12)
= Il + I2 + "‘@’de »

Q
Note that

L|=Z  Jovedu,|< sup[ sup IcvllygleZD(s)Scuwncm) £2D(¢),
QneY; ij(e‘) xeQNeY, |

where D(g) is the quantity of the 'boundary' squares, and 52D(5)—+0 by Jordan's
measurability property of the set 0Q . Hence /5 — 0 as ¢ tends to zero.
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Now we show that /; — 0. To do so, we note that

| =[S 0(x; )ys(x;)6” = [gedx < +
7

Q

Z I¢’ Yedx| <

Qrel;

Z(w(xj)}%(xj)";li' I¢Yede€2

J &Y,

3)

7

(p(x,-)yg(x,-)——;; j¢ygdxl¢2+c|l¢lk~(n)€2D(E)‘
5}',-

Let us suppose the converse, that is,

lsz¢(x Iys(x;) =672 [py.dre? >0.
aY

Since Q is -bounded, it is contained in a number of squares £Y; smaller than C/ &2,

where C does not depend on ¢. So, there exist a constant C* >0 and a value &* >0
such that

O(x;)Yp(x; )= €72 [pypdx 2C* (13)
. EYj

(for an infinite number of indices j for every fixed ¢). Hence the extremely wild
oscillations is present in.the sequence {q;ys } However ([1],[2]), if we have the very rapid
fluctuations in the functions {@/5} then the convergence gy, — @y almost everywhere

in Q is-excluded. .
This fact 1mmed1ately reﬂects the fallure of the strong convergence goy e W m

L2( Q) as'&£— 0. Indeed, by the initial assumptions we. have -
|y€|<c forevery ek, e > in LI(Q),
and [[@y, — (oyllLl(Q)—w as €0 forany ¢eCO (R2)

Let A be any subset of QQ with |A| # 0. Then, by Valadier's Theorem [2], ¢y, > oy

strongly if and only if the following criterion is satisfied: V& >0 3% >0,3Bc 4 with
IB{ # 0 such that

[B|'l f‘(ayg —]Bi'l j@vﬂx'& <5 Ve<él,
B

B

Hence, for any ¢ < ¥ thereisa square ¢; B such that

g2 j'qug—a’Z Iwgdxdx<5.
£Y;

Since the functions @y, are continuous and uniformly bounded it follows that for any
point x; of £¥; satisfying the condition
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gp(xj )yg (xj )— g2 ngdx #0.
&Y;

there can be found a constant 4, > 0 satisfying |

3—2 J. We _8—2 I(”ysdx dx = A, ¢(xj)}’g(xj)‘5~2 j.Wa‘dx
EYJ SYJ

Hence

O(%;)ye(x;) -2 [gpedr|< 47'S
&Y,

and we come into conflict with (13). So, our supposition - was wrong and we get .

lsz(o(x )ye(xj)—¢ -2 j'@/sdxe =0.
eY;

As a result, we have 7} - 0. Thus, summing up the results obtained above and the
relations (12), (9), we come to the desired identity (10).
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