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Abstract. The permutation code (or the code) is well known object
of research starting from 1970s. The code and its properties is used in
di�erent algorithmic domains such as error-correction, computer search,
etc. It can be de�ned as follows: the set of permutations with the mini-
mum distance between every pair of them. The considered distance can
be di�erent. In general, there are studied codes with Hamming, Ulam,
Levensteins, etc. distances.
In the paper we considered permutations codes over 2-Sylow subgroups of
symmetric groups with Hamming distance over them. For this approach
representation of permutations by rooted labeled binary trees is used.
This representation was introduced in the previous author's paper. We
also study the property of the Hamming distance de�ned on permutations
from Sylow 2-subgroup Syl2(S2n) of symmetric group S2n and describe
an algorithm for �nding the Hamming distance over elements from Sylow
2-subgroup of the symmetric group with complexity O(2n).
The metric properties of the codes that are de�ned on permutations from
Sylow 2-subgroup Syl2(S2n) of symmetric group S2n are studied. The
capacity and number of codes for the maximum and the minimum non-
trivial distance over codes are characterized.
Key words: permutation codes, Sylow 2-subgroup, symmetric group,
Hamming distance

Àíîòàöiÿ. Ïî÷èíàþ÷è iç 1970-õ ðîêiâ êîäè, ïîáóäîâàíi íà ïiäñòàíîâ-
êàõ, òà ¨õ âëàñòèâîñòi øèðîêî äîñëiäæóþòüñÿ ó ðiçíèõ ñôåðàõ. Ïiä êî-
äîì íà ãðóïi ïiäñòàíîâîê ðîçóìiþòü ìíîæèíó åëåìåíòiâ iç ãðóïè Sn,
äå äîâiëüíà ïàðà iç ìíîæèíè ìà¹ âiäñòàíü íå ìåíøó âiä çàäàíî¨. Ïðè
öüîìó ìîæóòü âèêîðèñòîâóâàòè ÿê ðiçíi ïiäãðóïè ñèìåòðè÷íî¨ ãðóïè,
òàê i ðiçíi ìåòðèêè, íàïðèêëàä, Õåììiíãà, Óëàìà, Ëåâåíøòåéíà òîùî.
Ó ñòàòòi ðîçãëÿäàþòüñÿ êîäè ïiäñòàíîâîê iç ñèëîâñüêî¨ 2-ïiäãðóïè
Syl2(S2n) ñèìåòðè÷íî¨ ãðóïè S2n ç âiäñòàííþ Õåììiíãà dH íàä íèìè.
Äëÿ ¨õ äîñëiäæåííÿ âèêîðèñòàíî çâ'ÿçîê ãðóïè Syl2(S2n) iç ãðóïîþ
áiíàðíèõ êîðåíåâèõ n-ðiâíåâèõ äåðåâ ç ìiòêàìè LT2,n. Òàêîæ îïè-
ñàíî âëàñòèâîñòi âiäñòàíi Õåììiíãà íà ïiäñòàíîâêàõ iç ñèëîâñüêî¨ 2-
ïiäãðóïè Syl2(S2n) ñèìåòðè÷íî¨ ãðóïè S2n òà ïîáóäîâàíî àëãîðèòì
ïîøóêó âiäñòàíi Õåììiíãà äëÿ ïiäñòàíîâîê ãðóïè, ùî ìà¹ ñêëàäíiñòü
O(2n). Îêðiì òîãî, äîñëiäæåíî ìåòðè÷íi âëàñòèâîñòi êîäiâ íà ïiäñòà-
íîâêàõ iç Syl2(S2n) òà çíàéäåíî ðîçìiðè i êiëüêiñòü êîäiâ äëÿ ìàêñè-
ìàëüíî¨ òà ìiíiìàëüíî¨ íåíóëüîâî¨ âiäñòàíi Õåììiíãà.
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1. Introduction

A permutation codes is studied since the 1970s (see [2], [3], [5] for examples).
The permutation code of length n and with minimum distance d over metric
d is the set of permutations C ∈ Sn such that for every pair of di�erent
permutations π, σ ∈ C the distance between π and σ is greater or equal to d.
Usually it is considered Hamming distance between permutations.

Permutation codes are used as error-correction codes in channels with low
power-line communication (see [4], [8]).

One of direction of investigations is to study properties of codes de�ned
on algebraic substructures. Bailey in [1] gave e�cient decoding algorithms in
the case when the permutation codes are subgroups. In this paper, we discuss
properties of codes in the case when permutation codes are de�ned on Sylow
2-subgroup of the symmetric group S2n .

We also study the property of the Hamming distance dH de�ned on
permutations from Sylow 2-subgroup Syl2(S2n) of symmetric group S2n and
describe an algorithm for �nding the Hamming distance over elements from
Sylow 2-subgroup of the symmetric group with complexity O(2n).

2. Preliminaries

A tree T is called rooted tree if there is one vertex v0 that is called the root.
A rooted tree is called binary tree if the degree of the root v0 is equal 2 and
the degrees of other vertices (except leaves) are equal 3. Denote by Tn a binary
rooted tree with n levels. Let V (Tn) be a set of all vertices of the tree Tn (see
[7], [12]). We denote by LT2,n the set of all binary n-levels rooted trees with
labels 0 or 1 on all vertices from the 0th to the (n− 1)th levels.

Let D be a tree from the set LT2,n. We enumerate all vertices of all levels.
Let i be a number of vertex v on level j. We say that a pair (j, i) is coordinates
of the vertex v of a tree D, i ∈ {1, . . . , 2j}, j ∈ {0, . . . , (n − 1)}. Denote this
c(v) = (j, i).

Assume that (j, i) < (k, r) if j < k or j = k and i < r. We also say that
vertex v is less then vertex w (v < w) if c(v) < c(w) (see [10]).

Denote by OV (D) the set of vertices labeled by 1 of a tree D ∈ LT2,n (see
[10]).

Let v0, v, w ∈ V (Tn). We say that the vertex v is under the vertex w (the
vertex w is above the vertex v) if w belongs to the path which connects v with
the root v0 of the tree. Denote v � w (see [10]).

De�ne the next operations on a set of all vertices of the tree D:
switch(D, v) = "to switch two sub-trees of the tree D, for which vertex v is a
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root"(see [10]).

For every vertex v ∈ V (Tn) determine a mapping ACTw : V (Tn)→ V (Tn)
by the next rule (see [10]):

ACTw(v) = v′ if and only if v′ is an image of v after switch(Tn, w).

Note that:

• if v � w and c(w) = (k, r), c(v) = (j, i), then c(v′) = (j, i′) and

i′ =


i+ 2j−k−1, if i ≤ (r − 1) · 2j−k + 2j−k−1,

(i.e., v is in the left branch of a sub-tree with a root w);

i− 2j−k−1, if i ≥ (r − 1) · 2j−k + 2j−k−1 + 1,

(i.e., v is in the right branch of a sub-tree with a root w).

• if v 6� w, then ACTw(v) = v.

We extend the de�nition of ACT on ordered sets of vertices in the next
way.

1. For an ordered set of vertices A = {a1, . . . , au} and some vertex b de�ne:

ACTA(b) = ACTau(ACTau−1(. . . (ACTa1(b)) . . .)).

2. For ordered sets of vertices A = {a1, . . . , au} and B = {b1, . . . , br} de�ne:

ACTA(B) = (ACTA(b1), . . . ,ACTA(br))

Note that the result of operation ACTA(B) is an odered set.

Theorem 1. [10]. For any trees D1, D2 ∈ LT2,n we have:

OV (D1 ·D2) =
(
ACT(OV (D1),<)

(
OV (D2)

))
∆OV (D1).

Lemma 1. [10]. Let A ⊂ V (Tn) be some an ordered set of vertices and
B,C ⊂ V (Tn). Then we have:

ACTA(B∆C) = ACTA(B)∆ACTA(C),

where ∆ is symmetric di�erence of the sets.

Let D1, D2 ∈ LT2,n. Then:

• denote byD1∆D2 the tree from LT2,n which is de�ned by a set of vertices
with labels 1 OV (D1)∆OV (D2);

• by the symbol ACTD1

(
D2

)
we de�ne the set ACT(OV (D1),<)

(
OV (D2)

)
.
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Let a vertex v be a vertex with label 1 of a tree. We call the vertex v the
main vertex if any vertex from the way between v and v0 has the label 0 (see
[11]).

Recall that the number of un�xed points of permutation π is the number
of indexes i where π(i) 6= i. Denote h(π) (see [9]).

Proposition 1. [11]. The number of un�xed point h(π) of permutation
π ∈ Syl2(S2n) is equal to the number of leaves under all main vertices of the
corresponding tree D ∈ LT2,n.

The second row a = (a1, a2, . . . , a2n) of permutation π =(
1 2 . . . 2n

a1 a2 . . . a2n

)
is called a block of elements (see [10]).

Recall the de�nition of 2-separated permutation (see [10]).

De�nition 1. Permutation π is called 2-separated if we can do the next
steps.

1. At �rst, we divide the block a into 2 sub-blocks with the same length:
u1 = (a1, . . . , a2n−1) and u2 = (a2n−1+1, . . . , a2n).Then we check if every
element of u1 is greater (or less) than every element of u2.

2. If step 1 holds, then we repeat process and divide blocks u1 and u2

into sub-blocks u1,1, u1,2 and u2,1 u2,2. After that we check the value
of elements between corresponding blocks. And so on until we get sub-
blocks that contain only one element.

Remark, that all permutations from the group Syl2(S2n) are 2-separated
(see [10]).

3. Hamming distance between two permutations from
Syl2(S2n)

Recall that the Hamming distance between two permutations π1, π2 ∈ Sk
is the number of elements at which the corresponding images are di�erent:

dH(π1, π2) =
∣∣∣{x ∈ {1, . . . , k} | π1(k) 6= π2(k)

}∣∣∣. (3.1)

Suppose we have two isomorphic mappings:

• ψ : LT2,n → Syl2(S2n) is de�ned by Algorithm 1 of transformation a tree
into a permutation [10];

• τ : Syl2(S2n) → LT2,n is de�ned by Algorithm 2 of transformation a
permutation into a tree [10].
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Theorem 2. Let π1, π2 be permutations from Syl2(S2n) and D1, D2 ∈
LT2,n be corresponding trees. Then :

dH(π1, π2) = dH

(
e, ψ(D1∆D2)

)
, (3.2)

where e is the identity element of the group Syl2(S2n).

Proof. Induction on the index n.
The basis. In case n = 1 the statement of the theorem holds for the group

Syl2(S2).
Inductive step:. We shall show that if the statement of the theorem holds

for n, then the statement also holds for n+ 1.
1. Let v0 be the root of D1∆D2 with label 1, i.e.,

v0 ∈ OV (D1∆D2). (3.3)

Without loss of generality we can say that v0 ∈ OV (D1) and v0 6∈ OV (D2).
From Algorithm 2 (see [10]) follow that:

π1(1) > π1(2n + 1) and π2(1) < π2(2n + 1).

These permutations are 2-separated because π1, π2 ∈ Syl2(S2n+1). Hence,

π1

(
{1, . . . , 2n}

)
= {2n + 1, . . . 2n+1}, π1

(
{2n + 1, . . . , 2n+1}

)
= {1, . . . 2n},

π2

(
{1, . . . , 2n}

)
= {1, . . . , 2n}, π2

(
{2n + 1, . . . , 2n+1}

)
= {2n + 1, . . . , 2n+1},

Therefore,
dH(π1, π2) = 2n+1. (3.4)

On the other hand, from Lemma 3.3 and Algorithm 1 (see [10]) it follows
that:

π(1) > π(2n + 1), for π = ψ(D1∆D2).

Note that π is 2-separated because π ∈ Syl2(S2n+1). Hence,

π
(
{1, . . . , 2n}

)
= {2n + 1, . . . 2n+1} and π

(
{2n + 1, . . . , 2n+1}

)
= {1, . . . 2n}.

So,
dH(e, π) = 2n+1. (3.5)

Thus by equations (3.4) and (3.5) we have (3.2).

2. Let v0 be a root of the tree D1∆D2 with label 0, i.e.,

v0 6∈ OV (D1∆D2). (3.6)

Then v0 6∈ OV (D1) and v0 6∈ OV (D2) or v0 ∈ OV (D1) and v0 ∈ OV (D2).

32



PERMUTATION CODES OVER SYLOW 2-SUBGROUPS OF SYMMETRIC GROUPS

Consider the case v0 6∈ OV (D1) and v0 6∈ OV (D2). Let π1, π2 ∈ Syl2(S2n+1)
be corresponding permutations to trees D1, D2.

The image of the left sub-tree will be the left sub-tree and the image of the
right sub-tree will be the right sub-tree because both trees have the label 0 at
the root. Then from Algorithm 2 (see [10]) implies that:

π1(1) < π1(2n + 1) òà π2(1) < π2(2n + 1).

As π1, π2 ∈ Syl2(S2n+1), these permutations are 2-separated. So,

π1

(
{1, . . . , 2n}

)
= {1, . . . , 2n}, π1

(
{2n + 1, . . . , 2n+1}

)
= {2n + 1, . . . , 2n+1},

π2

(
{1, . . . , 2n}

)
= {1, . . . , 2n}, π2

(
{2n + 1, . . . , 2n+1}

)
= {2n + 1, . . . , 2n+1}.

Note that the part of permutation π, that corresponds to the left sub-tree,
permutes elements 1, . . . , 2n. And the part of permutation π, that corresponds
to the right sub-tree, permutes elements 2n + 1, . . . , 2n+1. So, the narrowing of
permutation π ∈ Syl2(S2n+1) can be decomposed into two sub-permutations
π1, π2 ∈ Syl2(S2n) (see Fig. 1):

Fig. 1. Representation of tree with its sub-trees and corresponding permutation's narrowings

Denote: πLk := πk
∣∣
{1,...,2n}, πRk := πk

∣∣
{2n+1,...,2n+1}, k = 1, 2.

Then we have:

dH(π1, π2) = dH(πL1 , π
L
2 ) + dH(πR1 , π

R
2 ). (3.7)
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The permutations πLk and πRk , k = 1, 2, are permutations with the length
2n. They are de�ned by n-levels labeled tree (by the left and the right sub-trees
of trees D1 and D2 correspondingly). From assumption of induction we have:

dH(πL1 , π
L
2 ) = dH(eL, ψ(DL

1 ∆DL
2 ); (3.8)

dH(πR1 , π
R
2 ) = dH(eR, ψ(DR

1 ∆DR
2 )); (3.9)

From equations (3.7), (3.8) and (3.9) it follows:

dH(π1, π2) = dH(eL, ψ(DL
1 ∆DL

2 ) + dH(eR, ψ(DR
1 ∆DR

2 )). (3.10)

Note that the permutations πLk , π
R
k are de�ned on the disjoint union of

sets. So,

dH(π1, π2) = dH(eL, ψ(DL
1 ∆DL

2 ))+dH(eR, ψ(DR
1 ∆DR

2 )) = dH(e, ψ(D1∆D2)).
(3.11)

The case v0 ∈ OV (D1) and v0 ∈ OV (D2) is similar to the previous.

The proof is complete.

Proposition 2. Let π ∈ Syl2(S2n), e be an identity element of the group
Syl2(S2n). Then:

dH(e, π) = h(π).

Proof. The proof strictly implies from de�nitions of the distance dH and the
function h.

The proof is complete.

Based on Proposition 2, equation (3.2) of Theorem 2 can be represented in
the following way:

dH(π1, π2) = h
(
ψ(D1∆D2)

)
. (3.12)

Example 1. Let π1, π2 ∈ Syl2(S24) and D1, D2 ∈ LT2,4 be corresponding
trees (see Fig. 2) Then:

Fig. 2. Permutations π1, π2 and corresponding tress D1, D2
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Fig. 3. Permutations π that corresponds to tree D = D1∆D2

Then D = D1∆D2 can be represented by the fallowing tree on Fig. 3. So,
by equation (3.12) we have: dH(π1, π2) = dH(e, π) = h(π) = 14.

3.1. Hamming distance search algorithm

Let π1, π2 ∈ Syl2(S2n). Assume that π1, π2 are de�ned by trees D1, D2 ∈
LT2,n correspondingly.

We introduce the next notations:
a[k] be the kth coordinate of the string a;
a[b, c] be a sub-string of a, which are de�ned from the bth to the cth coordinates
of the string a;
len(a) be the function, which de�nes the number of coordinates in the string
a.

Algorithm 1. Hamming distance search algorithm.

Input: a ← (a[1], . . . , a[2n]), b ← (b[1], . . . , b[2n]), #a and b be the
second strings of permutations π1 and π2 correspondingly.

Output: Hamming distance between permutations π1, π2.

1: # De�ne the recursive sub-program with arguments a, b:
2: function Hem(a, b)
3: # Check if labels of vertices with the same coordinates are di�erent:

4: if
(
a[1] > a[ len(a)

2 + 1] xor b[1] > b[ len(b)
2 + 1]

)
then

5: return len(a)
6: end if

7: if len(a) = 2 then

8: return 0
9: end if

10: return Hem
(
a[1, len(a)

2 ]; b[1, len(b)
2 ]

)
+

+Hem
(
a
[ len(a)

2 + 1 , len(a)
]
; b
[ len(b)

2 + 1 , len(b)
])

11: end function

12: Hem(a, b)
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Theorem 3. Hamming distance search algorithm is correct.

Proof. First we note that:

1. in step 4, the value(
a[1] > a[2n−1 + 1] xor b[1] > b[2n−1 + 1]

)
(3.13)

is true if and only if corresponding vertices with the same coordinates
from trees D1, D2 will have di�erent labels. The last means that the
vertex with the same coordinates of tree D1∆D2 will be labeled by 1.

2. step 7, len(a) = 2, will be achieved if and only if permutations act in the
same way on the corresponding points;

3. the recursive call of sub-program (step 10) means the jump from the
vertex to its children in trees D1, D2.

As the result, condition (3.13) in the algorithm will be achieved for the main
vertices of tree D1∆D2. Proposition 1 claims that the number of un�xed points
of permutations is equal to the number of leaves under all its main vertices.
But the number of leaves under some main vertex is equal to the length of
corresponding string a in recursive sub-program.

So, the algorithm calculates distance h(ψ(D1∆D2)). From equation (3.12)
we have:

h(ψ(D1∆D2)) = dH(π1, π2).

The proof is complete.

Proposition 3. The complexity of Algorithm 1 for any permutations
π1, π2 ∈ Syl2(S2n) equals O(2n).

Proof. The maximum number of operations will be achieved when the maxi-
mum number of calls to sub-program will be done because of recursiveness of
the algorithm. This will be if and only if the treesD1 andD2 will have the same
labels on vertices with the same coordinates. In this case, all vertices of tree
D1∆D2 will be labeled by 0. So, the Algorithm 1 needs to make 2 compares
on the step 4 for every labeled vertex. The number of vertices is 2n−1. So,
O(2 ∗ 2n−1) = O(2n).

The proof is complete.

Theorem 4. The average-case complexity of Algorithm 1 is O(n).

Proof. Let π1, π2 ∈ Syl2(S2n). By symbol N(π1, π2) we denote the number of
calls of sub-program Hem by Algorithm 1 during the calculation of dH(π1, π2).
Let Σ(n) =

∑
π1,π2∈Syl2(S2n )

N(π1, π2).
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Denote byK(n) the average number of these calls for all pairs of permutati-
ons from Syl2(S2n). Then

K(n) =
Σ(n)∣∣Syl2(S2n)

∣∣2 , where
∣∣Syl2(S2n)

∣∣ = 22n−1.

We shall show, that:

Σ(n) = n · (22n−1)2 and K(n) = n (3.14)

by induction over index n.
The basis. Let n = 1. The group Syl2(S21) has the order 2 and permutations

of this group are completely de�ned by label on the root of the tree from LT2,1.
Then the total number of all pairs of permutations is 4. As the result, Σ(1) = 4,
K(1) = 1.

Induction step: case n+ 1 under assumption that for l ≤ n equation (3.14)
holds.

• Case 1. Let corresponding trees have di�erent labels on roots: 0 and 1 or
1 and 0. The total number of such options is 2. Then Algorithm 1 stops
at the �rst entrance into sub-program, because of step 4. The number of
trees from LT2,n+1, which have a �xed label on root, is equal to 22n+1−2.
Then the total number of calls for such pairs equals

1 · 2 · (22n+1−2)2. (3.15)

• Case 2. Let corresponding trees have the same labels on roots: 0 and 0
or 1 and 1. The total number of such options is 2. Then the condition
at step 4 is satis�ed when Algorithm 1 runs for the �rst time. So, the
algorithm will call sub-program recursively for both sub-trees. Note, that
their sub-trees belong to LT2,n. Based on the induction assumption, it is
required to make K(n) = 2n average calls of Hem by the algorithm for
every pair of sub-trees. As the result, we have the following number of
calls of such pairs equals

(1 + 2K(n)) · 2 · (22n+1−2)2. (3.16)

From equations (3.15) and (3.16) imply the total number of calls equals:

Σ(n+ 1) = 2 · (22n+1−2)2 + (1 + 2K(n)) · 2 · (22n+1−2)2 =

= (2 + 2n) · 2 · 1

4
· (22n+1−1)2 = (n+ 1) · (22n+1−1)2.

So, K(n+ 1) =
Σ(n+ 1)∣∣Syl2(S2n+1)

∣∣2 =
(n+ 1) · (22n+1−1)2

(22n+1−1)2
= n+ 1

The proof is complete.
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4. Permutation codes over Sylow 2-subgroup of symmetric
group

In the code theory the codes over symmetric group of permutations Sn
and its subgroups are considered. With it, there are used di�erent metrics over
codes, like, Hamming, Ulam, Levenstein, etc. We will study codes, which are
de�ned over Syl2(S2n) and their properties according to Hamming distance.

4.1. Hamming distance properties

Lemma 2. For any π1, π2 ∈ Syl2(S2n) dH(π1, π2) is even number.

Proof. Let π1, π2 be 2-separated permutations from Syl2(S2n) and D1, D2 ∈
LT2,n be corresponding trees. From equation (3.12) we haves:

dH(π1, π2) = h(ψ(D1∆D2)).

But h(ψ(D1∆D2)) is equal to the number of leaves, which are under main
vertices of tree D1∆D2. This number is always even (degree of 2).

The proof of Lemma 2 is complete.

Lemma 3. Let m be an even number, 2 ≤ m ≤ 2n. Then there exist
permutations π, σ ∈ Syl2(S2n) such that

dH(π, σ) = m.

Proof. From Theorem 2 we have dH(π1, π2) = dH

(
e, ψ(D1∆D2)

)
. So, we can

assume that π = e. Note, that the vertices of tree D1, that corresponds to π
have labels 0.

Let D2 be a corresponding tree to the permutation σ.

Case 1. Let m = 2n. Then the root of the tree D2 has the label 1. So, we
have:

dH(e, σ) = h(ψ(D1∆D2)) = h(ψ(D2)) = 2n.

Case 2. Let m 6= 2n. Then the root of tree D2 is labeled by 0.
Consider expression of even number m as a base-2:

m = m1 · 21 + . . .+mn−1 · 2n−1, where mk ∈ {0, 1}, k ∈ {1, n− 1}.

We will label vertices of tree D2 by 1 based on values mk, where k decrease
from n− 1 to 1, in the following way:

• the level j is changing by the rule: j = n− k;

• if mk = 0, then we skip the level j = n− k with corresponding value k;

• if mk = 1, then on the level j = n − k we choose a vertex v such that
the path from v to v0 doesn't contain any vertex with label 1. We label
by 1 the vertex v. So, it becomes a main vertex.
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Note that the tree D2 has at most one vertex with label 1 on every level j,
where 1 ≤ j ≤ 2n−1.

The number of leaves, that are under main vertex of level j = n − k, is
2n−j = 2k, k ∈ {1, n − 1}. Hence, the permutation σ has exactly m un�xed
points. So,

dH(e, σ) = h(ψ(D1∆D2)) = h(ψ(D2)) = m.

The proof is complete.

Lemma 4. Let π be a permutation from Syl2(S2n), d be an even number,
0 ≤ d ≤ 2n. Then

|{σ ∈ Syl2(S2n)|dH(π, σ) = d}| = |{Q ∈ LT2,n|h(ψ(Q)) = d}|.

Proof. Let D ∈ LT2,n be the corresponding tree to the permutation π ∈
Syl2(22n). Let D′ = τ(σ) ∈ LT2,n. Then Hamming distance between σ and π
equals d if and only if the following condition holds:

d = dH(π, σ) = h
(
ψ
(
D∆D′

))
. (4.1)

The capacity of the set {σ ∈ Syl2(S2n)|dH(π, σ) = d} equals the number of
permutations σ, which are satisfying the condition (4.1).

The last equality is hold for every tree D′ ∈ {D∆Q
∣∣Q ∈ LT2,n, h(ψ(Q)) =

d}, because:

d = h
(
ψ(D∆D′)

)
= h

(
ψ(D∆(D∆Q))

)
= h

(
ψ(D∆D∆Q)

)
= h

(
ψ(Q)

)
.

Hence,∣∣∣{D∆Q
∣∣ Q ∈ LT2,n, h(ψ(Q)) = d

}∣∣∣ =
∣∣∣{Q ∈ LT2,n

∣∣ h(ψ(Q)) = d
}∣∣∣. (4.2)

From (4.2) implies that the number of permutations σ, for wich dH(π, σ) =
d, equals the number of trees Q ∈ LT2,n such that h(ψ(Q)) = d.

The proof is complete.

4.2. Permutation codes over Syl2(S2n)

Recall denotation A0(n, d) as the maximum capacity of permutation code
with the length n and the minimum distance d (see [6]).

Let CH(2n, d) be a code, which is de�ned on permutations from Syl2(S2n)
with Hamming distance d such that for every permutations π, σ ∈ Syl2(S2n)
we have:

π, σ ∈ CH(2n, d) if and only if dH(π, σ) ≥ d.
De�ne AH(2n, d) as the maximum possible capacity of code, which is consi-

sted of permutations from Syl2(S2n) of length 2n and Hamming distance at
most d.

We represent the code CH(2n, D) in the matrix form. The rows of
corresponding matrix are the second rows of permutations from CH(2n, d).
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Example 2. Consider the group

Syl2(S22) =
{

( 1 2 3 4
1 2 3 4 ), ( 1 2 3 4

1 2 4 3 ), ( 1 2 3 4
2 1 3 4 ), ( 1 2 3 4

2 1 4 3 ), ( 1 2 3 4
3 4 1 2 ), ( 1 2 3 4

3 4 2 1 ),

( 1 2 3 4
4 3 1 2 ), ( 1 2 3 4

4 3 2 1 )
}
.

De�ne code CH(22, 4) as a set of permutations:{
( 1 2 3 4

1 2 4 3 ), ( 1 2 3 4
2 1 3 4 ), ( 1 2 3 4

3 4 1 2 ), ( 1 2 3 4
4 3 2 1 )

}
.

Then we represent code by the next matrix:

M =


1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

 .

Also, AH(22, 4) = 4.

Proposition 4. AH(2n, 2n) = 2n.

Proof. Suppose, that the code CH(2n, 2n) consists of 2n + k permutations
from Syl2(S2n), k ≥ 1. Then the matrix of this code has (2n + k) rows and
2n columns. There are at least 2 rows, which have the same elements on the
same positions because the elements of matrix are the numbers from the set
{1, . . . , 2n}. In this case, Hamming distance between permutations, which are
correspond to the current 2 rows, will be less than 2n. It is a contradiction
to the proposition's statement. So, the number of permutations in the code
CH(2n, 2n) cannot be greater than 2n.

Let us show that there is the code with capacity 2n. Let m =
(m0, . . . ,mn−1) be a sequence over set {0, 1}. For any such sequence we
construct the tree D(m) by the next way: if mj = 1, then every vertice of
the jth level of tree D(m) will be labeled as 1, j ∈ {0, n− 1}.

Any of such �nite sequence de�nes the unique tree D(m). Let m, t be
two di�erent �nite sequences. Then there exists the minimum number j such
that mj 6= tj . So, every vertex in the jth level of the corresponding tree D =
D(m)∆D(t) will have label 1. Every vertex of the jth level will be main vertex
because j is the minimum such number. Then:

dH(ψ(D(m)), ψ(D(t))) = h(ψ(D(m)∆D(t))) = 2n.

As the number of these di�erent �nite sequences m is 2n, we have 2n

permutations, which are obtained by ψ(D(m)). So, the code CH(2n, 2n) consi-
sts of 2n permutations.

The proof is complete.
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Remark 1. The last proof implies that every code CH(2n, 2n) can be de�ned
by the square matrix M 2n × 2n with the next conditions:

1. every element ar,c of the matrix M is from the range {1, . . . , 2n}, 1 ≤
r, c ≤ 2n;

2. in every column all elements are di�erent;

3. every row of such matrix is a second row of some 2-separated permutati-
on.

Note, that the switching operation over rows of the matrix M doesn't
change the code. Without loss of generality, we may assume that all diagonal
elements of matrix M of the code are equal to 1.

Note that every permutation from Syl2(S2n) is 2-separated. So, the
numbers 1 and 2 are always present in the same block of the length 2. Hence,
we have the next representation for the element 2:

2 =

{
ar,r+1, if r is odd;

ar,r−1, if r is even.

As the result, the main diagonal will consist of the following blocks 1 2
2 1 (see

Fig. 4):

Fig. 4. Matrix M of code CH(2n, 2n)

Theorem 5. The number of permutation codes CH(2n, 2n) with the maxi-
mum Hamming distance can be de�ned recursively by the following way:

f(n) =

{
4, if n = 2;

f4(n− 1) · (2n−1!)2, if n > 2.

Proof. From Remark 1 it follows that the number of permutation codes
CH(2n, 2n) equals to the number of the matrices M (see Fig. 4).

Induction over the index n.
The basis. Let n = 2.
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There are the following permutation codes over Syl2(S2n) and Hamming
distance dH(π, σ) = 4 for every π, σ ∈ Syl2(S22):

1 2 4 3
2 1 4 3
3 4 1 2
4 3 2 1

 ,


1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

 ,


1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

 ,


1 2 4 3
2 1 3 4
3 3 1 2
3 4 2 1

 .

From the direct calculations, there are no other permutation codes with the
same distance.

So, f(2) = 4.

Induction step: case n under assumption that for l < n the statement holds.

Let M = ( A B
C D ) (see Fig. 4).

• The induction assumption for matrices A and D holds. So, we have the
next number of variants of them:

f2(n− 1). (4.3)

• 2-separated property of permutations implies that the elements of matri-
ces B and C are the numbers {2n−1 + 1, 2n−1 + 2, . . . , 2n}.
The matrix B can be transformed into the matrix B′ with blocks of
numbers 2n−1 + 1 and 2n−1 + 2 on the main diagonal, similar to general
construction of the matrix M . The number of such di�erent matrices
B′ is f(n − 1), as for matrices A and D. The number of di�erent row
transformations of matrix B′ is 2n−1!. The rule of product implies that
the total number of di�erent matrices B equals

f(n− 1) · 2n−1! (4.4)

We have the same for the matrix C:

f(n− 1) · 2n−1! (4.5)

(4.3)�(4.5) implies that the number of di�erent matrices M equals

f(n) = f2(n− 1) · f(n− 1) · 2n−1! · f(n− 1) · 2n−1! = f4(n− 1) · (2n−1!)2.

The proof is complete.

Proposition 5. AH(2n, 2) = 22n−1.

Proof. The proof is implied by the fact that for every pair of permutations
π, σ ∈ Syl2(S2n) the following conditions hold:

• dH(π, σ) is always even number. It is based on Lemma 2;
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• dH(π, σ) ≥ 2, if π 6= σ.

Therefore, the code will consist of all elements of the group. So,

AH(2n, 2) =
∣∣Syl2(S2n)

∣∣ = 22n−1.

The proof is complete.

Remark 2. There is the only one code CH(2n, 2) over group Syl2(S2n).
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