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Abstract. The permutation code (or the code) is well known object
of research starting from 1970s. The code and its properties is used in
different algorithmic domains such as error-correction, computer search,
etc. It can be defined as follows: the set of permutations with the mini-
mum distance between every pair of them. The considered distance can
be different. In general, there are studied codes with Hamming, Ulam,
Levensteins, etc. distances.

In the paper we considered permutations codes over 2-Sylow subgroups of
symmetric groups with Hamming distance over them. For this approach
representation of permutations by rooted labeled binary trees is used.
This representation was introduced in the previous author’s paper. We
also study the property of the Hamming distance defined on permutations
from Sylow 2-subgroup Syl2(S2») of symmetric group Sz» and describe
an algorithm for finding the Hamming distance over elements from Sylow
2-subgroup of the symmetric group with complexity O(2").

The metric properties of the codes that are defined on permutations from
Sylow 2-subgroup Syl2(S2n) of symmetric group S2» are studied. The
capacity and number of codes for the maximum and the minimum non-
trivial distance over codes are characterized.

Key words: permutation codes, Sylow 2-subgroup, symmetric group,
Hamming distance

Amnoranis. I[Tounnatoun i3 1970-x pokiB koam, MOGY/I0BAHI HA T ICTAHOB-
KaX, Ta IX BJIACTHBOCTI MIMPOKO JOCIIKYIOThC ¥ pizHux cdepax. Ilix xo-
JIOM Ha rpymi HiZCTAHOBOK PO3yMiIOTH MHOXKWHY €/IEMEHTIB i3 rpyuu Sy,
e JOBLJIbHA TIapa i3 MHOXKWHU Ma€ BIACTaHb He MeHTTy Bia 3amamoi. [Ipu
IHOMY MOXKYTH BUKOPUCTOBYBATH sIK Pi3HI MArPyNH CUMETPUIHOI TPYIIH,
Tak i pi3HI MeTPUKHU, HATIPUKJIAT, XeMMiHTra, Y/Iama, JleBeHmTeiiHa Too.
Y craTTi poO3TIAIA0THCA KOAW TIICTAHOBOK i3 CHMJIOBCHKOI 2-TATpymH
Syla(S2n) cumerpwanol rpymm Son 3 BiacTanHIo XeMmMiara dy HaJ HAMU.
g ix nocsimpkeHHs BUKOPUCTAHO 3B’a30K rpymmu Sylz(San) i3 rpymoro
GiHapHUX KOpPEHeBUX n-piBHeBux maepeB 3 Mitkamu LT5 ,. Takox omm-
CaHO BJIACTUBOCTI BifcTaHi XeMMiHTra Ha MMICTAHOBKAX 13 CUIOBCHKOI 2-
migrpymu Syl (S2n) cumerpmanoi rpynm Spn Ta mOOYIOBAHO AJTOPUTM
TOMmyKy BimcTaHi XeMMiHTa SIS TiICTAHOBOK TPYIIHN, IO MA€ CKJIQIHICTH
O(2™). OkpiM TOTO, MOCIMKEHO METPHUYHI BJIACTUBOCTI KOMIB Ha ICTa-
HOBKax 13 Syl2(S2n) Ta 3malineno po3mipu i KUIBKICTH KOAIB 71l MAKCH-
MaJIbHOI Ta MiHIMa/IbHOI HEHY/IBOBOI BifCTaHi XeMMiHTa.
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1. Introduction

A permutation codes is studied since the 1970s (see [2], [3], [5] for examples).
The permutation code of length n and with minimum distance d over metric
d is the set of permutations C' € S, such that for every pair of different
permutations 7,0 € C the distance between w and o is greater or equal to d.
Usually it is considered Hamming distance between permutations.

Permutation codes are used as error-correction codes in channels with low
power-line communication (see [4], [8]).

One of direction of investigations is to study properties of codes defined
on algebraic substructures. Bailey in [1] gave efficient decoding algorithms in
the case when the permutation codes are subgroups. In this paper, we discuss
properties of codes in the case when permutation codes are defined on Sylow
2-subgroup of the symmetric group Son.

We also study the property of the Hamming distance dp defined on
permutations from Sylow 2-subgroup Syla(San) of symmetric group Son and
describe an algorithm for finding the Hamming distance over elements from
Sylow 2-subgroup of the symmetric group with complexity O(2").

2. Preliminaries

A tree T is called rooted tree if there is one vertex vg that is called the root.
A rooted tree is called binary tree if the degree of the root vy is equal 2 and
the degrees of other vertices (except leaves) are equal 3. Denote by T;, a binary
rooted tree with n levels. Let V(T,,) be a set of all vertices of the tree T;, (see
[7], [12]). We denote by LT, the set of all binary n-levels rooted trees with
labels 0 or 1 on all vertices from the Oth to the (n — 1)th levels.

Let D be a tree from the set LT3 ,. We enumerate all vertices of all levels.
Let i be a number of vertex v on level j. We say that a pair (j,4) is coordinates
of the vertex v of a tree D, i € {1,...,27}, j € {0,...,(n — 1)}. Denote this
(v) = (G.1).

Assume that (j,7) < (k,r) if j < k or j = k and i < r. We also say that
vertex v is less then vertex w (v < w) if ¢(v) < ¢(w) (see [10]).

Denote by OV (D) the set of vertices labeled by 1 of a tree D € LT3, (see
[10)).

Let vg,v,w € V(T,). We say that the vertex v is under the vertex w (the
vertex w is above the vertex v) if w belongs to the path which connects v with
the root vy of the tree. Denote v > w (see [10]).

Define the next operations on a set of all vertices of the tree D:
switch(D,v) = "to switch two sub-trees of the tree D, for which vertex v is a
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root"(see [10]).

For every vertex v € V(T,,) determine a mapping ACT,, : V(T,,) — V(T},)
by the next rule (see [10]):

ACT,(v) = ¢ if and only if v’ is an image of v after switch(T,,w).
Note that:
e if v > w and c(w) = (k,r),c(v) = (j,1), then c¢(v') = (j,47') and

i+ 2R < (p — 1) - 207k 4 2i Rl
, ) (ie, visin the left branch of a sub-tree with a root w);
TNkl s (r— 1) 20k p2i kel 4

(i.e., v is in the right branch of a sub-tree with a root w).

o if v ¥ w, then ACT,(v) = v.

We extend the definition of ACT on ordered sets of vertices in the next
way.

1. For an ordered set of vertices A = {a1,...,a,} and some vertex b define:

ACT4(b) = ACT,, (ACT,,_,(...(ACT,,(b))...)).

2. For ordered sets of vertices A = {ay,...,a,} and B = {b1,...,b,} define:
ACTA(B) = (ACT4(by),. .., ACT (b))
Note that the result of operation ACT 4(B) is an odered set.

Theorem 1. [10]. For any trees D1, Dy € LT, we have:
OV(Dy - Dy) = (A@T(OV(DIM (OV(Dg)))AOV(Dl).

Lemma 1. [10]. Let A C V(1)) be some an ordered set of vertices and
B,C c V(T,). Then we have:

ACT 4(BAC) = ACT4(B)AACT 4(C),
where A is symmetric difference of the sets.
Let Dl, Dy € LTQ?n. Then:

e denote by D1AD5 the tree from LT5 ,, which is defined by a set of vertices
with labels 1 OV (D1)AOV (D3);

e by the symbol ACTp, (D2) we define the set ACT oy (p,),<)(OV(D2)).
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Let a vertex v be a vertex with label 1 of a tree. We call the vertex v the
main vertexr if any vertex from the way between v and vy has the label 0 (see
[11]).

Recall that the number of unfizxed points of permutation 7 is the number
of indexes i where 7(i) # i. Denote h(m) (see [9]).

Proposition 1. [11]. The number of unfixed point h(m) of permutation
m € Syla(San) is equal to the number of leaves under all main vertices of the
corresponding tree D € LT5 .

The second row a = (ay,a2,...,a9m) of permutation 7 =
n
(1 2 2 > is called a block of elements (see [10]).
a; az ... agn

Recall the definition of 2-separated permutation (see [10]).

Definition 1. Permutation 7 is called 2-separated if we can do the next
steps.

1. At first, we divide the block a into 2 sub-blocks with the same length:
uy = (ai,...,agn-1) and us = (@gn-1,1,...,a2n).Then we check if every
element of uy is greater (or less) than every element of wus.

2. If step 1 holds, then we repeat process and divide blocks u; and wuo
into sub-blocks w11, w12 and ug1 uz 2. After that we check the value
of elements between corresponding blocks. And so on until we get sub-
blocks that contain only one element.

Remark, that all permutations from the group Syla(Son) are 2-separated
(see [10]).

3. Hamming distance between two permutations from

Syla(San)

Recall that the Hamming distance between two permutations 71,19 € Si
is the number of elements at which the corresponding images are different:

dpy (11, 79) = ‘{:c e {1,...,k} | m(k) # m(k)}(. (3.1)
Suppose we have two isomorphic mappings:

o : LTy, — Syla(San) is defined by Algorithm 1 of transformation a tree
into a permutation [10];

o 7 : Syla(San) — LT5,, is defined by Algorithm 2 of transformation a
permutation into a tree [10].
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Theorem 2. Let m,my be permutations from Syla(Son) and D1, Dy €
LT, be corresponding trees. Then :

dp(m1,m0) = dt (e,qp(DlADg)), (3.2)

where e is the identity element of the group Syla(San).

Proof. Induction on the index n.

The basis. In case n = 1 the statement of the theorem holds for the group
Syla(S2).

Inductive step:. We shall show that if the statement of the theorem holds
for n, then the statement also holds for n + 1.

1. Let vy be the root of D1A Dy with label 1, i.e.,

Vo € OV(DlADg) (33)

Without loss of generality we can say that vg € OV (D1) and vy & OV (D3).
From Algorithm 2 (see [10]) follow that:

m1(1) > m (2" + 1) and m(1) < ma(2" + 1).

These permutations are 2-separated because 71, my € Syla(Syn+1). Hence,
m({l, o 2"}) = {2 1, 2n ), m<{2” 1, 2”“}) —{1,...2"},

m({1,...,2"}) —{1,...,27, 7r2({2”+1,...,2”+1}) — (2" 4 1,... 27,

Therefore,
dp (71, m9) = ontl, (3.4)

On the other hand, from Lemma 3.3 and Algorithm 1 (see [10]) it follows
that:
m(1) > w(2" + 1), for m = ¢(D1AD>).

Note that 7 is 2-separated because m € Syla(Syn+1). Hence,
71'({1, . .,2"}) = {2" +1,...2"*} and w({zn 1, ,2”“}) —{1,...2").

So,
dy(e,m) = 2"FL, (3.5)

Thus by equations (3.4) and (3.5) we have (3.2).
2. Let vg be a root of the tree D1 ADs with label 0, i.e.,
vo & OV (D1ADs). (3.6)
Then vg € OV (D1) and vy € OV (D2) or vg € OV (Dy) and vy € OV (D2).
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Consider the case vg € OV (Dq) and vg € OV (D2). Let 71, w3 € Syla(Son+1)
be corresponding permutations to trees Dy, Ds.

The image of the left sub-tree will be the left sub-tree and the image of the
right sub-tree will be the right sub-tree because both trees have the label 0 at
the root. Then from Algorithm 2 (see [10]) implies that:

m1(1) <m (2" + 1) 1a m2(1) < ma (2" + 1).

As 71, m9 € Syla(San+1), these permutations are 2-separated. So,
m({1,...,2n}) —{1,...,27, 71'1<{2"—|— 1,...,2"“}) —[2n 41,2

7r2<{1,...,2"}) —{1,...,2"), m({2"+1,...,2"+1}) —[2n 41,2

Note that the part of permutation 7, that corresponds to the left sub-tree,
permutes elements 1,...,2". And the part of permutation 7, that corresponds
to the right sub-tree, permutes elements 2" +1,...,2"*!, So, the narrowing of
permutation m € Syla(Syn+1) can be decomposed into two sub-permutations
71, m2 € Syla(San) (see Fig. 1):

D" B
k k
...... A ) b |’/_ g _-\i o o a s s B ( B )
A / S Nl Nauk N | A W
B/
-I-I- ( 1 2 21 2" 2 242 2'1:11 gnﬂ )
k +1
TH(1) s 'ITf2n)'IT(2rj|-1) ............. .n_(2“ )
-IT L -IT R
k k

Fig. 1. Representation of tree with its sub-trees and corresponding permutation’s narrowings

L. R ._ _
Denote: 7/ := Wk‘{17.“72n}, T = Wk‘{QnHW’QnH}, k=1,2.
Then we have:

dp(m,m2) :dH(WlL,TF%)-i-dH(W{%,ﬂ'g). (3.7)
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The permutations 77,’;4 and ﬂ,f, k = 1,2, are permutations with the length
2™. They are defined by n-levels labeled tree (by the left and the right sub-trees
of trees D1 and Dy correspondingly). From assumption of induction we have:

dp (nf',m5) = dp (", (DY ADy); (3.8)
dp (ni',75") = dp (e, (DY ADS) ); (3.9)

From equations (3.7), (3.8) and (3.9) it follows:
dp(m,m) = d (", (DY ADY) + dp (e, (D ADS)). (3.10)

Note that the permutations 77,5 , 77,13 are defined on the disjoint union of

sets. So,

dp (1, m2) = d (e, w(DEFADIY)) + dp (€2, (DEADE)) = dy (e, (D1 ADs)).
(3.11)
The case vg € OV (D7) and vy € OV (Ds) is similar to the previous.
The proof is complete.

Proposition 2. Let m € Syly(San), e be an identity element of the group
Syly(San ). Then:
di(e,m) = h(rm).

Proof. The proof strictly implies from definitions of the distance dy and the
function h.
The proof is complete.

Based on Proposition 2, equation (3.2) of Theorem 2 can be represented in
the following way:

dp(m1,m2) = h(¢¥(D1ADy)). (3.12)

Ezample 1. Let 7y, m € Syla(Ss14) and Dy, Dy € LT5 4 be corresponding
trees (see Fig. 2) Then:

Fig. 2. Permutations 71, 72 and corresponding tress D1, D>
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0< 0 (i 0
e leTaiatutalutatetate ote!
~
3O3O30303OA0AOA0
2 5678910111213141516)
8 1 2 3 41112 9 1013 14 16 15

Fig. 3. Permutations 7 that corresponds to tree D = D1 A Do

Then D = D1ADs can be represented by the fallowing tree on Fig. 3. So,
by equation (3.12) we have: dy(m,m2) = du(e,m) = h(r) = 14.

3.1. Hamming distance search algorithm

Let 71, m9 € Syla(San). Assume that 71, o are defined by trees Dy, Dy €
LT, correspondingly.

We introduce the next notations:
alk] be the kth coordinate of the string a;
a[b, c] be a sub-string of a, which are defined from the bth to the cth coordinates
of the string a;
len(a) be the function, which defines the number of coordinates in the string
a.

Algorithm 1. Hamming distance search algorithm.

Imput: a < (a[l],...,a[2"]),b < (b[1],...,b[2"]), #a and b be the
second strings of permutations m and wo correspondingly.

Output: Hamming distance between permutations i, mTs.

1: # Define the recursive sub-program with arguments a,b:
2: function HEM(a,b)

3: # Check if labels of vertices with the same coordinates are different:
4 ﬁ(qu>a#%@+4]mrmu>b#%@+1gtmm
5: return len(a)
6: end if
7: if len(a) =2 then
8: return 0
9: end if
10: return Hem (a[l, lenQ(a)]; b[1, leg(b)])+

—i—Hem(a[@ +1, len(a)]; b[lenz(b) +1, len(b)])
11: end function
12: HEM(a, b)
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Theorem 3. Hamming distance search algorithm is correct.
Proof. First we note that:

1. in step 4, the value
(a[l] > a[2"1 4 1] xor b[1] > b[2" + 1}) (3.13)

is true if and only if corresponding vertices with the same coordinates
from trees Dy, Do will have different labels. The last means that the
vertex with the same coordinates of tree D1ADs will be labeled by 1.

2. step 7, len(a) = 2, will be achieved if and only if permutations act in the
same way on the corresponding points;

3. the recursive call of sub-program (step 10) means the jump from the
vertex to its children in trees Dy, Ds.

As the result, condition (3.13) in the algorithm will be achieved for the main
vertices of tree D1 AD5. Proposition 1 claims that the number of unfixed points
of permutations is equal to the number of leaves under all its main vertices.
But the number of leaves under some main vertex is equal to the length of
corresponding string a in recursive sub-program.

So, the algorithm calculates distance h(¢(D1ADs3)). From equation (3.12)
we have:

h(y(D1AD3)) = dg (71, m2).

The proof is complete.

Proposition 3. The complexity of Algorithm 1 for any permutations
71, m2 € Syla(San) equals O(2").

Proof. The maximum number of operations will be achieved when the maxi-
mum number of calls to sub-program will be done because of recursiveness of
the algorithm. This will be if and only if the trees D and Dy will have the same
labels on vertices with the same coordinates. In this case, all vertices of tree
D1A Dy will be labeled by 0. So, the Algorithm 1 needs to make 2 compares
on the step 4 for every labeled vertex. The number of vertices is 2"~!. So,
O(2%2" 1) = 0(2").
The proof is complete.

Theorem 4. The average-case complexity of Algorithm 1 is O(n).

Proof. Let 71,9 € Syla(San). By symbol N (71, m2) we denote the number of
calls of sub-program Hem by Algorithm 1 during the calculation of dg (71, m2).
Let X(n) = > N (my,m3).

71,2 ESyla(San)
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Denote by K (n) the average number of these calls for all pairs of permutati-
ons from Syla(San). Then
%(n)
2

n)= W where |Syl2(52n)| = 22"71.
Yla{o2n

We shall show, that:
Y(n)=n-(2""1H? and K(n) =n (3.14)

by induction over index n.

The basis. Let n = 1. The group Syla(Ss1) has the order 2 and permutations
of this group are completely defined by label on the root of the tree from LT5 ;.
Then the total number of all pairs of permutations is 4. As the result, ¥(1) = 4,
K(1)=1.

Induction step: case n+ 1 under assumption that for | < n equation (3.14)
holds.

e Case 1. Let corresponding trees have different labels on roots: 0 and 1 or
1 and 0. The total number of such options is 2. Then Algorithm 1 stops
at the first entrance into sub-program, because of step 4. The number of
trees from LT5 41, which have a fixed label on root, is equal to 92"+ -2,
Then the total number of calls for such pairs equals

1.2 (2277 -2)2, (3.15)

e Case 2. Let corresponding trees have the same labels on roots: 0 and 0
or 1 and 1. The total number of such options is 2. Then the condition
at step 4 is satisfied when Algorithm 1 runs for the first time. So, the
algorithm will call sub-program recursively for both sub-trees. Note, that
their sub-trees belong to LT3 ,,. Based on the induction assumption, it is
required to make K (n) = 2n average calls of Hem by the algorithm for
every pair of sub-trees. As the result, we have the following number of
calls of such pairs equals

(1+2K(n))-2- (22" 2)2, (3.16)
From equations (3.15) and (3.16) imply the total number of calls equals:

Sn+1)=2-(2>"""2)2 + (142K (n))-2- (27" 2?2 =

=@2+2n) 2 i LTI = (1) (222
1 (927 —1y2
So, K(n+1) = =+ 1) 2:(n+1)2n+(1212 ) =n+1
‘SyZQ(Sz'rH»l)‘ (2 - )

The proof is complete.
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4. Permutation codes over Sylow 2-subgroup of symmetric
group

In the code theory the codes over symmetric group of permutations S,
and its subgroups are considered. With it, there are used different metrics over
codes, like, Hamming, Ulam, Levenstein, etc. We will study codes, which are
defined over Syla(San) and their properties according to Hamming distance.

4.1. Hamming distance properties

Lemma 2. For any mi,m9 € Syla(Son) dg(m1,m2) is even number.

Proof. Let m,m be 2-separated permutations from Syla(Son) and Dy, Dy €
LT, ,, be corresponding trees. From equation (3.12) we haves:

dp (1, m2) = h(1(D1ADz)).

But A()(D1ADs)) is equal to the number of leaves, which are under main
vertices of tree D;AD5. This number is always even (degree of 2).
The proof of Lemma 2 is complete.

Lemma 3. Let m be an even number, 2 < m < 2". Then there exist
permutations ,0 € Syla(San) such that

dp(m,0) =m.

Proof. From Theorem 2 we have dg(m,m2) = di (e, ¢(D1AD2)). So, we can

assume that m = e. Note, that the vertices of tree D1, that corresponds to m
have labels 0.
Let D2 be a corresponding tree to the permutation o.

Case 1. Let m = 2™, Then the root of the tree Dy has the label 1. So, we
have:
dri(e,0) = h((D1AD2)) = h(1(Dg)) = 2",

Case 2. Let m # 2". Then the root of tree Dy is labeled by 0.
Consider expression of even number m as a base-2:

m=my-2" +... +mu_1-2"", where my, € {0,1}, k€ {1,n —1}.

We will label vertices of tree Do by 1 based on values my, where k decrease
from n — 1 to 1, in the following way:

e the level j is changing by the rule: j =n — k;
e if my = 0, then we skip the level j = n — k with corresponding value k;

e if m; = 1, then on the level j = n — k we choose a vertex v such that
the path from v to vy doesn’t contain any vertex with label 1. We label
by 1 the vertex v. So, it becomes a main vertex.
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Note that the tree Dy has at most one vertex with label 1 on every level 7,
where 1 < j < 271
The number of leaves, that are under main vertex of level j = n — k, is
27 = 2F k € {1,n — 1}. Hence, the permutation ¢ has exactly m unfixed
points. So,
di(e,0) = h(¥(D1ADs3)) = h(¥(D3)) = m.

The proof is complete.

Lemma 4. Let  be a permutation from Syla(San), d be an even number,
0<d<2™ Then

[{o € Syla(San)|du(m,0) = d}| = {Q € LTan|h(¥(Q)) = d}]-

Proof. Let D € LT3, be the corresponding tree to the permutation = €
Syla(22n). Let D' = 7(0) € LTs,,. Then Hamming distance between o and 7
equals d if and only if the following condition holds:

d=dy(r,0) = h(¢(DAD’)>. (4.1)

The capacity of the set {0 € Syla(San)|du(m,0) = d} equals the number of
permutations o, which are satisfying the condition (4.1).

The last equality is hold for every tree D' € {DAQ|Q € LTy, h(¢(Q)) =
d}, because:

d = h(y(DAD")) = h(y(DA(DAQ))) = h(y(DADAQ)) = h(¥(Q)).

Hence,

{DAQ | Q € LTop h(¥(Q) = d}| = {Q € LTo | h(¥(Q) = d}|. (42)

From (4.2) implies that the number of permutations o, for wich dg (7, 0) =
d, equals the number of trees Q) € LT5,, such that h(¢(Q)) = d.
The proof is complete.

4.2. Permutation codes over Syly(San)

Recall denotation Ag(n,d) as the mazimum capacity of permutation code
with the length n and the minimum distance d (see [6]).

Let Ci(2",d) be a code, which is defined on permutations from Syla(San)
with Hamming distance d such that for every permutations 7,0 € Syla(San)
we have:

m,0 € Cy(2",d) if and ounly if dy(m,0) > d.

Define A (2", d) as the mazimum possible capacity of code, which is consi-
sted of permutations from Syls(San) of length 2" and Hamming distance at
most d.

We represent the code Cy(2",D) in the matrix form. The rows of
corresponding matrix are the second rows of permutations from Cy (2", d).
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Example 2. Consider the group

Syla(S5) = {(1334). (1334). (33

NN

FINCY

(13391380}

Define code C(22,4) as a set of permutations:
{A310.G33D.G313H.(438D )

Then we represent code by the next matrix:

13):(3172),(3%31),

=
wno
—w
wno

1 2 4 3
21 3 4
M_3412
4 3 21

Also, Ay (2%,4) = 4.

Proposition 4. Ay (2",2") = 2",

Proof. Suppose, that the code Cp(2",2") consists of 2" + k permutations
from Syla(San), k > 1. Then the matrix of this code has (2" + k) rows and
2" columns. There are at least 2 rows, which have the same elements on the
same positions because the elements of matrix are the numbers from the set
{1,...,2"}. In this case, Hamming distance between permutations, which are
correspond to the current 2 rows, will be less than 2™. It is a contradiction
to the proposition’s statement. So, the number of permutations in the code
Cy(2™,2™) cannot be greater than 2.

Let us show that there is the code with capacity 2". Let m =
(mg,...,mp—1) be a sequence over set {0,1}. For any such sequence we
construct the tree D(m) by the next way: if m; = 1, then every vertice of
the jth level of tree D(m) will be labeled as 1, j € {0,n — 1}.

Any of such finite sequence defines the unique tree D(m). Let m, t be
two different finite sequences. Then there exists the minimum number j such
that m; # t;. So, every vertex in the jth level of the corresponding tree D =
D(m)AD(t) will have label 1. Every vertex of the jth level will be main vertex
because j is the minimum such number. Then:

dir(W(D(m)), (D(t))) = h((D(m)AD(1))) = 2".

As the number of these different finite sequences m is 2™, we have 2"
permutations, which are obtained by ¢ (D(m)). So, the code Cg(2",2") consi-
sts of 2" permutations.

The proof is complete.
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Remark 1. The last proof implies that every code C'ir(2™,2™) can be defined
by the square matrix M 2™ x 2" with the next conditions:

1. every element a,. of the matrix M is from the range {1,...,2"}, 1 <
e <2

2. in every column all elements are different;

3. every row of such matrix is a second row of some 2-separated permutati-
on.

Note, that the switching operation over rows of the matrix M doesn’t
change the code. Without loss of generality, we may assume that all diagonal
elements of matrix M of the code are equal to 1.

Note that every permutation from Syla(San) is 2-separated. So, the
numbers 1 and 2 are always present in the same block of the length 2. Hence,
we have the next representation for the element 2:

ary—1, if ris even.

5 _ {amﬂ, if r is odd;

As the result, the main diagonal will consist of the following blocks 1 2 (see
Fig. 4):

A B
7 %
o
M = 12
21 *
*
* 12
2 1
C D

Fig. 4. Matrix M of code Cy(2",2")

Theorem 5. The number of permutation codes Cr(2"™,2") with the mazi-
mum Hamming distance can be defined recursively by the following way:

4 fn=2;
f(n) = {f4(n —1)- (212, ifn> 2.

Proof. From Remark 1 it follows that the number of permutation codes
Cp(2™,2") equals to the number of the matrices M (see Fig. 4).

Induction over the index n.

The basis. Let n = 2.
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There are the following permutation codes over Syly(S2n) and Hamming

distance dy(m,0) = 4 for every m,0 € Syla(Sy2):

1 2 4 3 1 2 3 4 1 2 4 3 1 2 4 3
21 4 3 21 4 3 21 3 4 21 3 4
341 2143121713 412|331 2
4 3 21 34 21 4 3 2 1 3 4 2 1

From the direct calculations, there are no other permutation codes with the
same distance.

So, f(2) =4.
Induction step: case n under assumption that for | < n the statement holds.
Let M = (A B) (see Fig. 4).

e The induction assumption for matrices A and D holds. So, we have the

next number of variants of them:

fA(n—1). (4.3)

e 2-gseparated property of permutations implies that the elements of matri-

ces B and C are the numbers {2771 41,2771 + 2 ... 27}

The matrix B can be transformed into the matrix B’ with blocks of
numbers 2! 41 and 2"~! + 2 on the main diagonal, similar to general
construction of the matrix M. The number of such different matrices
B’ is f(n — 1), as for matrices A and D. The number of different row
transformations of matrix B’ is 27~!. The rule of product implies that
the total number of different matrices B equals

f(n—1)-2"1 (4.4)

We have the same for the matrix C:

f(n—1)-2"1 (4.5)

(4.3)—(4.5) implies that the number of different matrices M equals
fn)=fn—1)fn—=1)-2""" f(n—1)- 2" = fi(n— 1) (2" )%
The proof is complete.

Proposition 5. Ay (2",2) = 22",

Proof. The proof is implied by the fact that for every pair of permutations
7,0 € Syla(San) the following conditions hold:
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o dy(m,o) >2,if m# 0.

Therefore, the code will consist of all elements of the group. So,

10.

11.

12.

Ap(2",2) = |Syla(Son)| = 22" 7.
The proof is complete.

Remark 2. There is the only one code Ci(2",2) over group Syla(Son).
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