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Strengthening the Comparison Theorem and
Kolmogorov Inequality in the Asymmetric
Case

Abstract. We obtain an strengthening the Kolmogorov comparison
theorem. In particular, it gives us the opportunity to obtain such
strengthening Kolmogorov inequality in the asymmetric case:
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for functions x ∈ Lr∞(R), where

|||x|||∞ :=
1

2
sup
α,β
{|x(β)− x(α)| : x′(t) 6= 0 ∀t ∈ (α, β)},

k, r ∈ N, k < r, α, β > 0, ϕr(· ;α, β)r is the asymmetric perfect spline
of Euler of order r and E0(x)∞ is the best uniform approximation of the
function x by constants.
Key words: Kolmogorov comparision theorem, Kolmogorov inequality,
asymmetric case, strengthening.

Анотацiя. В роботi отриано посилений варiант теореми порiвнян-
ня Колмогорова в несиметричному випадку. Це дозволило, зокрема,
одержати пiдсилення нерiвностi Колмогорова в несиметричному ви-
падку:
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для функцiй x ∈ Lr∞(R), де

|||x|||∞ :=
1

2
sup
α,β
{|x(β)− x(α)| : x′(t) 6= 0 ∀t ∈ (α, β)},

k, r ∈ N, k < r, α, β > 0, ϕr(· ;α, β)r− несиметричний iдеальний
сплайн Ейлера порядку r, а E0(x)∞− найкраще рiвномiрне наближе-
ння функцiї x константами.
Ключовi слова: Теорема порiвняння Колмогорова, нерiвнiсть Кол-
могорова, несиметричний випадок, пiдсилення.
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STRENGTHENING THE COMPARISON THEOREM
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1. Introduction. Let G be the real line R or the unit circle T which is
realized as the interval [0, 2π] with coincident endpoints. We will consider the
spaces Lp(G), 1 ≤ p ≤ ∞, of all measurable functions x : G → R such that
‖x‖p = ‖x‖Lp(G) <∞, where

‖x‖p :=

(∫
G
|x(t)|p dt

)1/p

, if 1 ≤ p <∞,

‖x‖∞ := vrai sup
t∈G
|x(t)|.

For α, β > 0 and x ∈ L∞(G) set

‖x‖∞,α,β := ‖αx+ + βx−‖∞,

where x±(t) := max{x±(t), 0}.
For r ∈ N denote by Lr∞(G) the space of all functions x ∈ L∞(G) for which

x(r−1) is locally absolutely continuous and x(r) ∈ L∞(G).
Let ϕr(· ;α, β), r ∈ N, be the 2π-periodic integral with zero mean value

on a period of the 2π-periodic function ϕ0(· ;α, β) defined on [0, 2π] in the
following way ϕ0(0 ;α, β) = ϕ0(2π ;α, β) := 0 and

ϕ0(· ;α, β) := α, if t ∈ (0, 2πβ/(α+ β)),

ϕ0(· ;α, β) := −β, if t ∈ (2πβ/(α+ β), 2π).

Notice that ϕr(· ; 1, 1) is the spline of Euler of order r.
Hörmander [1] proved the following theorem.
Theorem А. Let k, r ∈ N, k < r, G = R or G = T. Then for any function

x ∈ Lr∞(G) and for any α, β > 0 there is the sharp inequality

‖x(k)± ‖∞ ≤
‖ϕr−k( · ;α, β)±‖∞
E0(ϕr( · ;α, β))

1−k/r
∞

E0(x)1−k/r∞ ‖x(r)‖k/r∞;α−1,β−1 , (1)

where E0(x)∞ is the best uniform approximation of the function x by constants.
The equality in (1) is achieved for the functions x(t) = aϕλ,r(t;α, β) +

b, a, b ∈ R, λ > 0 if G = R and λ ∈ N if G = T.
The proof of Theorem A in [1] is based on the comparison theorem. In

view of the importance of this theorem for further exposition, we present its
formulation.

For r ∈ N; α, β > 0; G = R or G = T set

W r
∞,α,β(G) :=

{
x ∈ Lr∞(G) :

∥∥∥x(r)∥∥∥
∞,α−1,β−1

≤ 1

}
,

and let ϕλ,r(t;α, β) := λ−rϕr(λt;α, β) for λ > 0.
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Theorem В. Let r ∈ N; α, β > 0; x ∈ W r
∞;α,β(R) and the number λ is

such that
‖x±‖∞ ≤ ‖ϕλ,r(·;α, β)±‖∞. (2)

If the points ξ and η satisfying conditions

x(ξ) = ϕλ,r(η;α, β),

and
x′(ξ) · ϕ′λ,r(η;α, β) ≥ 0,

than
|x′(ξ)| ≤ |ϕ′λ,r(η;α, β)|.

In the symmetric case α = β Theorems A and B are due to Kolmogorov [2].
In this paper, we obtain (Theorem 1) a strengthening of Theorem B in

which condition (2) (‖x±‖∞ ≤ ‖ϕλ,r(·;α, β)±‖∞) теоремы B replaced by a
weaker condition |||x|||∞ ≤ E0(ϕλ,r(t;α, β))∞, where

|||x|||∞ :=
1

2
sup
α,β
{|x(β)− x(α)| : x′(t) 6= 0 ∀t ∈ (α, β)}. (3)

At the same time, the conclusion of Theorem 1 is stronger than the conclusion
of Theorem B.

It is clear that |||x|||∞ ≤ E0(x)∞, and it is easy to give examples of infinitely
differentiable functions x, for which the ratio

|||x|||∞
E0(x)∞

is arbitrarily little.
Using Theorem 1, we obtain (Theorem 2) a strengthening of inequality (1),

in which the quantity E0(x)∞ is replaced by a more delicate characteristic
|||x|||∞. As an application, we obtain (Theorem 3) a strengthening of Ligun’s
inequality [3] and Babenko inequality [4].

In the symmetric case α = β the results of this paper (Theorems 1−3) are
proved in [5], [6].

2. Strengthening the comparison theorem and Kolmogorov’s
inequality. Note that if the function x ∈ Lr∞(R) is monotonic on one of
infinite intervals (−∞, b] or [a,+∞), then there are finite limits limt→−∞ x(t)
and limt→+∞ x(t) respectively. We will assume for such functions

x(−∞) := lim
t→−∞

x(t), x(+∞) := lim
t→+∞

x(t).

Symbols a, b in Lemma 1 and Theorem 1 can take any values from the extended
number line. In doing so, we will assume +∞+ t = +∞, −∞+ t = −∞, ∀t ∈
R.
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Lemma 1. Let r ∈ N; α, β > 0; x ∈ W r
∞,α,β(R) and the number λ is

chosen from the condition

‖x′±‖∞ ≤ ‖ϕλ,r−1(·;α, β)±‖∞. (4)

Let further [a, b] be an interval of increasing (decreasing) function x such that
x′(t) 6= 0, t ∈ (a, b), and x′(a) = 0 if a 6= −∞, x′(b) = 0 , if b 6= +∞, and
[ξ, η] is the interval of increase (decrease) of the function ϕλ,r(·;α, β), where
ϕλ,r−1(ξ;α, β) = ϕλ,r−1(η;α, β) = 0 , and let γ be a local extremum point of
the function ϕλ,r−1(·;α, β) on the interval (ξ, η).

If t is an arbitrary point of the segment [a, b] for which there exists a point
y ∈ [γ, η] such that

|x(b)− x(t)| = |ϕλ,r(η;α, β)− ϕλ,r(y;α, β)| (5)

or a point y ∈ [ξ, γ] such that

|x(t)− x(a)| = |ϕλ,r(y)− ϕλ,r(ξ;α, β)|, (6)

then
|x′(t)| ≤ |ϕλ,r−1(y;α, β)|. (7)

Proof. For r = 1 the assertion of the lemma is obvious. Therefore, we will
assume that r ≥ 2.

Consider the case when the function x is increasing on the segment [α, β],
while the function ϕλ,r(·;α, β) increases on the segment [ξ, η]. The case of
decreasing functions x and ϕλ,r(·;α, β) is treated similarly.

Let us prove (7) under assumption (5).
Let us assume that inequality (7) is not satisfied, i.e.,

|x′(t)| > |ϕλ,r−1(y;α, β)|.

Then t < b and hence y < η. Using condition (4) and applying Theorem B
to the derivative x′, we obtain

x′(t+ u) > ϕλ,r−1(y + u;α, β), u ∈ (0, η − y),

while b− t ≥ η − y. But then

x(β)− x(t) =

∫ b

t
x′(u)du =

∫ b−t

0
x′(t+ u)du >

∫ η−y

0
ϕλ,r−1(y + u;α, β)du =

=

∫ η

y
ϕλ,r−1(u;α, β)du = ϕλ,r(η;α, β)− ϕλ,r(y;α, β),

which contradicts condition (5).
Inequality (7) is proved similarly under assumption (6).
Lemma 1 is proved.
The following theorem is a strengthening of Kolmogorov’s comparison

theorem in the nonsymmetric case.
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Theorem 1. . Let r ∈ N; α, β > 0; x ∈ W r
∞,α,β(K) and the number λ is

chosen from the condition

|||x|||∞ = E0(ϕλ,r(·;α, β))∞, (8)

where the quantity |||x|||∞ is defined by equality (3). Let further [a, b] be an
interval of increasing (decreasing) function x such that x′(t) 6= 0, t ∈ (a, b),
and x′(a) = 0 if a 6= −∞, x′(b) = 0 , if b 6= +∞, and [ξ, η] is the interval
of increase (decrease) of the function ϕλ,r(·;α, β), where ϕλ,r−1(ξ;α, β) =
ϕλ,r−1(η;α, β) = 0, and let γ be a local extremum point of the function
ϕλ,r−1(·;α, β) on the interval (ξ, η).

Then if for the point t ∈ [a, b] the point y ∈ [ξ, η] is chosen so that

|x(b)− x(t)| = |ϕλ,r(η;α, β)− ϕλ,r(y;α, β)| (9)

or so that
|x(t)− x(a)| = |ϕλ,r(y;α, β)− ϕλ,r(ξ;α, β)|, (10)

then
|x′(t)| ≤ |ϕλ,r−1(y;α, β)|. (11)

Proof.. Note, first of all, that in view of condition (8) for an arbitrary
point t ∈ [a, b] there exists a point y = y1 ∈ [ξ, η] satisfying equality (9) and
there exists a point y = y2 ∈ [ξ, η] satisfying equality (10).

Let us now prove that condition (8) implies the inequality

‖x′±‖∞ ≤ ‖ϕλ,r−1(·;α, β)±‖∞, (12)

those. condition (4) of Lemma 1 is satisfied.
Let’s assume the opposite. Let, for example.

‖x′+‖∞ > ‖ϕλ,r−1(·;α, β)+‖∞, ; ‖x′−‖∞ ≤ ‖ϕλ,r−1(·;α, β)−‖∞. (13)

Other options for not fulfilling (12) are considered similarly.
Then, considering the equality ‖ϕλ,r(·;α, β)±‖∞ = λ−r‖ϕr(·;α, β)±‖∞, we

conclude that there exists a number ω ∈ (0, λ) such that

‖x′+‖∞ = ‖ϕω,r−1(·;α, β)+‖∞. (14)

It follows from condition (8) and the inequality ω < λ that

|||x|||∞ < E0(ϕω,r(·;α, β))∞. (15)

In addition, in view of the second relation in (13)

‖x′−‖∞ < ‖ϕω,r−1(·;α, β)−‖∞. (16)

We choose a point t0 ∈ R so that

‖x′+‖∞ = x′(t0), (17)
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and let the number τ ∈ R satisfy the condition

‖ϕλ,r−1(·;α, β)+‖∞ = ϕλ,r−1(t0 + τ ;α, β)+. (18)

Denote by t1 and t2 the zeros closest to
the left and right of the point t0 functions
ϕγ,r−1(· + τ). Taking into account (14), (16)−(18) and applying Theorem B
to the function x′, we obtain

x′(t) ≥ ϕω,r−1(t+ τ ;α, β), t ∈ (t1, t2).

Hence we conclude that x′(t) > 0, t ∈ (t1, t2) and

x(t2)− x(t1) =

∫ t2

t1

x′(t)dt ≥
∫ t2

t1

ϕω,r−1(t+ τ ;α, β)dt =

= ϕω,r(t2 + τ ;α, β)− ϕω,r(t1 + τ ;α, β) = 2E0(ϕω,r(·;α, β))∞.

In this way,

|||x|||∞ ≥
1

2
|x(t2)− x(t1)| ≥ E0(ϕω,r(·;α, β))∞,

which contradicts inequality (15). Thus (12) is proved.
Let us now prove (11) under assumption (9).
Consider the case when the function x is increasing on the interval [a, b] and

the function ϕλ,r(·;α, β) increases on the interval [ξ, η]. The case of decreasing
functions x and ϕλ,r(·;α, β) is treated similarly.

If the point y, chosen from condition (9) is such that y ∈ [γ, η], then taking
into account (12) and applying Lemma 1, we obtain (11).

Now let the inclusion y ∈ [ξ, γ] take place for the point y chosen from
condition (9). From (8) and (9) it follows that

x(t)− x(a) ≤ ϕλ,r(y;α, β)− ϕλ,r(ξ;α, β).

Therefore, there exists a point y1 ∈ [ξ, γ] , y1 ≤ y such that

x(t)− x(a) = ϕλ,r(y1;α, β)− ϕλ,r(ξ;α, β).

Taking into account inequality (12) and applying Lemma 1, we obtain

|x′(t)| ≤ |ϕλ,r−1(y1)| ≤ |ϕλ,r−1(y)|.

Thus, (11) under assumption (9) is proved.
One can prove (11) similarly under assumption (10).
Theorem 1 is proved.
The following theorem is a strengthened version of inequality (1).

35



V. A. KOFANOV, K.D. SYDOROVYCH

Theorem 2. Let k, r ∈ N, k < r, G = R or G = T. Then for any function
x ∈ Lr∞(G) and for any α, β > 0 has place of sharp inequalities

‖x(k)± ‖∞ ≤
‖ϕr−k( · ;α, β)±‖∞
E0(ϕr( · ;α, β))

1−k/r
∞

|||x|||1−k/r∞ ‖x(r)‖k/r∞;α−1,β−1 , (19)

where the quantity |||x||||∞ is defined by relation (3).
Equality in (19) is achieved for the functions x(t) = aϕλ,r(t;α, β)+b, a, b ∈

R, λ > 0 for G = R and λ ∈ N for G = T.

Proof. Let us fix any x ∈ Lr∞(G). Because of the homogeneity inequality
(19), we can assume that

‖x(r)‖∞;α−1,β−1 = 1. (20)

Then x ∈ W r
∞,α,β(G) and Theorem 1 applies to the function x. Let’s choose

λ > 0 from the condition

|||x|||∞ = E0(ϕλ,r(·;α, β))∞. (21)

When proving Theorem 1, it was established that condition (21) implies (see
(12)) the inequality

‖x′±‖∞ ≤ ‖ϕλ,r−1(·;α, β)±‖∞, (22)

and hence
E0(x

′)∞ ≤ E0(ϕλ,r−1(·;α, β)∞. (23)

By virtue of Theorem A applied to the function x′, we have

‖x(k)± ‖∞ ≤
‖ϕr−k( · ;α, β)±‖∞

E0(ϕr−1( · ;α, β))
1−(k−1)/(r−1)
∞

E0(x
′)1−(k−1)/(r−1)∞ ‖x(r)‖(k−1)/(r−1)∞;α−1,β−1 .

Hence, taking into account (20), (23) and the equality ‖ϕλ,r(·;α, β)±‖∞ =
λ−r‖ϕr(·;α, β)±‖∞, derive the estimate

‖x(k)± ‖∞ ≤ ‖ϕλ,r−k(·;α, β)±‖∞, (24)

From (21) and (24) we obtain

‖x(k)± ‖∞
|||x|||1−k/r∞

≤
‖ϕλ,r−k( · ;α, β)±‖∞
E0(ϕλ,r( · ;α, β))

1−k/r
∞

=

=
λ−(r−k)‖ϕr−k( · ;α, β)±‖∞

(λ−rE0(ϕr( · ;α, β))∞)1−k/r
=
‖ϕr−k( · ;α, β)±‖∞
E0(ϕr( · ;α, β))

1−k/r
∞

. (25)

From (25) and (20) follows (19).
Theorem 2 is proved.
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3. Strengthening Ligun’s and Babenko’s inequalities. In [4] Babenko
proved the following inequality.

Theorem C. Let q ≥ 1, k, r ∈ N, k < r,. Then for any function x ∈
Lr∞(T) and for any α, β > 0 the exact inequality holds

‖x(k)± ‖Lq(T) ≤
‖ϕr−k( · ;α, β)±‖Lq(T)

E0(ϕr( · ;α, β))
1−k/r
∞

E0(x)1−k/r∞ ‖x(r)‖k/r∞;α−1,β−1 . (26)

Equality in (26) is achieved for the functions x(t) = aϕn,r(t;α, β)+b, a, b ∈
R, n ∈ N.

In the symmetric case α = β inequality (26) is due to Ligun [3].
The following theorem is a strengthening of inequality (26).

Theorem 3. Let q ≥ 1, k, r ∈ N, k < r. Then for any function x ∈ Lr∞(T)
and for any α, β > 0 the exact inequality holds

‖x(k)± ‖Lq(T) ≤
‖ϕr−k( · ;α, β)±‖Lq(T)

E0(ϕr( · ;α, β))
1−k/r
∞

|||x|||1−k/r∞ ‖x(r)‖k/r∞;α−1,β−1 . (27)

Equality in (27) is achieved for the functions x(t) = aϕn,r(t;α, β)+b, a, b ∈
R, n ∈ N.

Proof. Let us fix a function x ∈ Lr∞(T). In the case of k ≥ 2, inequalities
(27) can be obtained by compiling inequalities (26) and (19) as follows.

Note that inequality (26) applied to the function x′ implies the inequality

‖x(k)± ‖Lq(T) ≤

≤
‖ϕr−k( · ;α, β)±‖Lq(T)

E0(ϕr−1( · ;α, β))
1−(k−1)/(r−1)
∞

E0(x
′)1−(k−1)/(r−1)∞ ‖x(r)‖(k−1)/(r−1)∞;α−1,β−1 . (28)

On the other hand, inequality (19) for k = 1 implies the inequality

E0(x
′)∞ ≤

E0(ϕr−1( · ;α, β))∞

E0(ϕr( · ;α, β))
1−1/r
∞

|||x|||1−1/r∞ ‖x(r)‖1/r∞;α−1,β−1 , (29)

Estimating E0(x
′)∞ in inequality (28) using inequality (29) and taking into

account that (
1− k − 1

r − 1

)(
1− 1

r

)
= 1− k

r
,

we obtain inequality (27) for k ≥ 2.
In the case of k = 1 (as in the general case), the proof of inequality (27)

can be obtained by repeating the arguments from the proof of inequality (26)
in [4], using Theorem 1 instead of Theorem B in these arguments.

Theorem 3 is proved.
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