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A Lambda Analogue of the Gamma Function
and its Properties

Abstract. We consider a generalization of the gamma function which we
term as lambda analogue of the gamma function or A-gamma function and
further, we establish some of its accompanying properties. For the parti-
cular case when A\ = 1, the results established reduce to results involving
the classical gamma function. The techniques employed in proving our
results are analytical in nature.
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Awnoragisi. Mu posriisaemo y3arajibHeHHs ramMa-pyHKUIT, gKy Ha3UBa-
emMo IaMOma-aHaIoroM raMmma-QyHKIHI abo A-ramMMa-(dYHKIIE, a TaKOXK
BCTAHOBJ/IIOEMO fesiKi 3 11 cymyTHiX BiaactuBocTeir. s oKkpemMoro Buma-
Ky, KOu A = 1, BCTAHOBJIEHI PE3y/IbTATU 3BOAATHCS O PE3Y/IbTATIB, II0
BKJIIOYAIOTh KJIACHMYHY ramMMma-(QyHKIi0. Meronu, siki BUKOPUCTOBYIOTHCS
[JIs MATBEP/ZKEHHsT HAINX Pe3yIbTATiB, MAIOTh AHAJIITUIHUN XapaKkTep.
Kuarouosi caoBa: lamma-dysKIis, 15M01a-aHATIOT, A-TaMMa-GYHKITS, A-
Oera-dyukmisi, Teopema Bopa-Mosnepamna, nepiBuicTh

MSC2020: Pr1 33B15, SEc 26A48, 26D07, 33B20

1. Introduction

The gamma function, which is an extension of the factorial notation to
non-integer values, is encountered in every aspect of mathematics. Arguably,
it is one of the most studied special functions. It has numerous applications in
mathematical analysis, number theory, combinatorics, mathematical modeling,
statistics, probability theory, engineering, and physics, just to mention a few.
It is normally defined by the integral

F(a;):/ t*le~tat
0
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LAMBDA ANALOGUE OF THE GAMMA FUNCTION

for £ > 0. The upper incomplete gamma function is defined as

1"(:1:,5):/ t* e tdt

for s > 0 and = € (—o0,00) whereas the lower incomplete gamma function is

defined as .
fy(m,s):/ t"le~tat
0

for z > 0.

As a result of the important roles of this special function, it has been investi-
gated in various ways by several renowned researchers. A particular focus has
been on developing generalizations or extensions of the function. In the recent
past, some new generalizations have been defined and investigated. For example
see [3], [4], [5], [6], [10], [11], [13]. In this work, we continue the investigation in
this direction. Specifically, we consider a generalization of the gamma functi-
on which we term as lambda analogue of the gamma function or A-gamma
function, and further study some of its properties.

2. Main Results
In this section, we define the lambda analogue of the gamma function and
further study some of its accompanying properties.

Definition 1. Let x > 0 and A > 0. Then the A-gamma function is defined
as

Ly(z) = /000 " e Mdt (1)
= \""T'(x) (2)
o Al
ke x(z+1)(z+2) ... (z+ k)

In view of this definition, the upper incomplete A-gamma function is given as

Ca(z,a) = /OO t* L Aat (4)
a
whilst the lower incomplete A-gamma function is given as
w(z,a) = /Oa e Mdt. (5)
Obviously,
a(z,a) + x(z,a) = Ty(x). (6)

The A-gamma function may be interpreted as the Laplace transform of the
function f(t) = #*~! or the Mellin transform of the function f(t) = e .
When A\ = 1, the generalized functions I'y (z), I'x(x, a) and v, (z, a) respectively
reduces to the classical functions I'(z), I'(z,a) and v(x,a). The function (5)
has been studied in the recent works [7] and [12].
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The A-gamma function satisfies the following properties.

L) = 5, (7

Ta(z +1) ;F)\(x), x>0, (8)

Pa(k+1) = A’,il, k € No, (9)
Ta(2)Dy(1 — ) = ﬁ(m) z € (0,1), (10)
Ta(1+2)Ty(1 - 2) = #‘p‘zm) z € (0,1), (11)
Ty(z)Ty (x + ;) = 21—2$\/§FA(295), x>0, (12)
FAF(T(;:)]“) - (ii’“ 2> 0,k €N, (13)
A(k-ﬁ-;) :(2];;)\;)”.\/?, k € Ny, (14)

where (2)r = x(x +1)(x +2)...(x + k — 1) is the Pochhammer symbol and
ml!! is the double factorial of m.

Remark 1. Let the A\-beta function be defined as

~ Ia(@)a(y)
Ba(z,y) = Tty

for x > 0 and y > 0. Then this function coincides with the ordinary beta
function S(z,y) since

Ca(@)a(y) _ AT(@)A¥T(y) _ L(@)I(y)

s = = = - 5 . ].5
Definition 2. Let the A-psi function be defined as
¥a(2) = = InTy(2)
A dr A
for x > 0. Then
'\ (z)
= In A 16
1 1 — %~ 1
—(InA+7) +/ (17)
0 1 —t
—(In A dt 18
n+7+A Bl i (18)
> rz—1
—(In A 1
(I A+7) +kzo k+1)(k+a) (19)
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n

where v = lim,_ [ZTZI%—lnn] = 0.5772... is the Euler-Mascheroni

constant and ¢ (x) = % InT'(z) is the classical psi or digamma function.

Remark 2. It follows from (8) that

YA 1) = > +in(@) (20)
and since )
Ya(r +1) —ha(z) = ~>0,

then ¢ (z) is increasing. The increasing property of ¢ (x) implies that I'y(z)
is logarithmically convex and hence convex. Also, (16) implies that

UA(@) = ¢'(2)

and thus, the derivatives of 1) (x) and ¢, (x) coincides. In particular,

2 In A+
B = —ma+), B =T, wd - (B,
Theorem 1. For x >0, A >0 and u € (0,1), the inequality
1—u
<fﬂ> < Dlety 21)
TFu ()" Ta@)

holds.

Proof. By making use of Hélder’s inequality, we obtain

o
Dy(z + u) :/ trrule=M gy
0

_ /OO tuxe—u)\tt(l—u)(x—l)e—(l—u)ktdt
0

0 u fo'e) 1—u
< (/ t””e_’\tdt> (/ t‘”_le_)‘tdt>
0 0

= [Da(z + D] Ca(@)] (22)

By applying (8) to (22) we obtain

€T u
Dz +u) < (5) Ta@) (23)
and replacing u by 1 — u in (23) gives
T\ 1-u
My(z+1-—u)< (X) '(z). (24)
Further, replacing = by x 4+ u in (24) gives
1—u
Iz +1) < (”3?“) Ta(z + u). (25)
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<Th(z+u) < (%)UI)(x) (26)

Finally, applying (8) to (26) and rearranging gives the desired result (21).

Remark 3. Inequality (21) is equivalent to the inequality

—u T r+u\
GUeBE ey

and in particular, when u = %, we obtain

\/5 < Ca(z + }) <
AT I +3)
When A = 1, inequalities (27) and (28) respectively reduce to inequality (2.8)

of [14] and inequality (3) of [15] for s = 3.

1
—. 2
+5x (28)

>R

Theorem 2. The following limits are valid.

. Dz +w) 1
lim —2~ 7 1 2
a:ggo U\ (x) 2w’ z>0,u € (0,1), (29)
r
lim l'viuw = )\vfu’ T > 07 u,v € (07 1)7 (30)
T—00 F)\(Jj +U)
lim 2"\ (z) =1, =z >0, (31)
z—0
lim [* — Ty(z)| = A+ >0 (32)
xli{(l) x AT -0 7 v ’
m~ | L oz\mAta), ze@1),  (33)
250 2 Oy(1—z) Dh(1+4+z)] " e T
lim z¢p(z) = -1, x>0, (34)
z—0
) 1
iy [+ 0a(0)] = —@ma+). o> (35)
z—0 | X
liml[ LI }— G ze(0,1). (36
=0z (Ya(l—2) Ua(l+z)]  3(Ini+7)? e

Proof. By applying Squeezes theorem on (21), we obtain the limit (29). Next,
by using (29), we obtain

v—u

r r T
lim m”_ui)‘(m +u) = lim Az +u) . lim rTa() =
T—00 F/\(x + Q}) T—00 xur)\(qj) T—00 F}\(m + ’U)
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which proves (30). Next, by using (8), we obtain
1
igr%)xFA(w) /\aljlgbf,\(x +1)=2A 3 1
which proves (31). Next, we have

lim [1 ~Ti( )} — —lim {rm) _ 1]

x—0 xz—0 €T
— _ lim [APA(:C + 1]
x—0 x xT
r 1)—4
= —\lim [A(x—i_))\]
z—0 xT

= —\lim I'} 1
A lim Az +1)

=InA+7y
which proves (32). Next, we have
.1 1 1 ) Ml—-z) T\(1+x)
lim — — =
z—=0 T P)\(l—IL’) F,\(l—i—x) z—0 P/\(l—l’)Q F)\(1+JZ)2
=-2\InA+7)

which proves (33). Next, by using the functional equation (20), we have
li = i )-1)=-1
lim 2y (2) = lim (a9px (2 +1) —1)

which proves (34). Moreover, the functional equation (20) also implies that

T—r

liH(l) [i —i—i/i)\(a;)} =¢Yx(1) = —=(In XA +7)

which proves (35). Finally, we have

liml{ SN } = lim [Wx(l—fﬂ) L nd+o)
z—0 T lZJA(l *x) 1/1)\(1+£L‘) z—0 77[)>\(1 fx)2 wA(ler)Q
7T2
s

which proves (36). This completes the proof.

Remark 4. The limit (30) actually holds for all real numbers u and v such
that  + v > 0 and = + v > 0. This is deduced from the asymptotic relation
(6.1.47) on page 257 of [1] as follows.

@ tw) o AT (@ 4 )
lim x —— = lim z
T—00 F/\((B —+ 'U) T—00 A (x U)F(x + ’U)
I v—Uu v— UF( )
= A e N )
=)\, (37)
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Theorem 3. Let u >0, v > 0 such that © + 1 > uw+v. Then the function

Cy(z+D\(z+1—u—0)

Cy(z+1—uwl(z+1—0v) (38)

P(z) =

is decreasing. Consequently, for uw > 0, v > 0 and x + 1 > u+ v, the inequality

Caz+1)T(z+1—u—wv)

39
“Ta(z+1—ul\(z+1-0) (39)

holds. And for w >0, v >0 and x > u+ v, the inequality
Ta(z+1D)0\(z+1—u—v) (u+v)¥t? (40)

Myz+1—u)l\(z+1—wv) ut?
holds.

Proof. Taking the logarithmic derivative of P(x) yields

7;/((;)) —a(@+ D)+ +1l—u—v)— (@ +1—u) —Pr(z+1—0)
_ /1 PETU TV 4T U gt
- _ /1 (tu B 1)(tv — 1)t:v7ufvdt

<0.
Hence P(z) is decreasing. Consequently, applying (37) gives

P(z) > lim P(x)

T—r00
Cy(z+D\(z+1—u—0)
= lim
z—=oo My (x +1—u)lx(z+1—v)
W Tal+1) Dol 1-u—0)

= lim o7 “—"—"—. li
o0 Ca(z+1—u) P Cax(z+1—0v)
=1

which yields (39). Next, it is known that [9],
uuflv'ufl

oyt -

Blu,v) >
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for u > 0 and v > 0. This together with the monotonicity of P(x) implies that

Iy(u+v+ 1) (1
P(z) < Plu+v) = F)\Eu " 1)1“,\()11 +(1§
~u+v Dy(u+v)
—uww Ta(u)Ta(v)
U+ v 1
wv  Bi(u,v)
< (U+U)u+v

uto?

which yields (40). This completes the proof.
Remark 5. In particular, if w = v =1 in (39), then we obtain

Ia(z+ 1)\ (z — 1)

1< , > 1, 42
- Ia(z)? ! 42)
which can be rearranged as
A2 Ty(z—1)
- < = > 1. 43
2 S Thz+1)) (43)
Also, if u = v =  in (39), then we obtain
r nr

Da(@+3)?

and this can also be rearranged as

A Ia(z)
\/; < m, x> 0. (45)

Remark 6. The logarithmic convexity of the A-gamma function implies that
Da(kzr + (1= k)z2) < [Da(z)]*[Caz2)]' " (46)

for z1 > 0, zo > 0 and k € [0,1]. It is interesting to note that if z; = = + 1,
zp=x—1and k = 1, then we recover (42). Likewise, if 21 = z, 2o = 2+ 1 and
k= %, then we recover (44). More generally, if u >0, 21 = x4+ u, 22 =z —u
and k = %, then we obtain

Ia(@ + u)l'x(z — )

1< >0 47
o e SRR (47)
which is equivalent to
r 1 r 1—
1< Dt ulh@+1-u) w>0, 241> u (48)

- F)\((L‘+1>2 ’
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Theorem 4. Let u > 0 and x + 1 > u. Then the function

Mz +1+uw)\(z+1—u)

= 49
Al) Ty(z +1)? (49)
is decreasing. Consequently, the inequality
2 < Ca(z 4+ uw)ly(x — u) < 72 T (50)
x? — u? [y (x)? x? — u? sin(mu)

holds for x > u and u € [0, 1).

Proof. Logarithmic differentiation yields

Alz)
() =a(z+14+u)+r(x+1—u)—2¢)\(r+1)
1 T __ qxt+u _ pr—u
:/ 2t t t &
0 1—¢
1w _ 1)\2
Ny GEL
01—t
<0.

Thus, A(x) is decreasing. Using (48) in conjunction with the monotonicity of
A(x) and identity (11), we obtain

1< F/\(SC + 1+ U)FA(I‘ +1-— u) < FA(l + U)F)\(l — u)

- Ca(z +1)2 - (%)2

U
<

~ sin(mu)’

By applying (8), we arrive at the desired result (50) and this completes the
proof.

Remark 7. The results of Theorem 3 and Theorem 4 are motivated by the
paper [2]. For further information on inequalities of these types, one may refer
to that paper.

Theorem 5. The function
1

() = Ta(a) - (1)
15 increasing for x > 0 and the inequality
L maty) <@ <isig (52)
Z _(In oz
x 7 M= T A

holds for x € (0,1].

26
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Proof. By using (8), we have

_ )\F)\(m+1) -1
- X

K(z)
which implies that

2K (x) = daT\(z 4+ 1) = \[x(z +1) + 1
=0(z).

Then
0 () = Xzl (z +1) >0

which shows that 6(x) is increasing and so
6(z) > 0(0) = 0.
Hence K(z) is increasing. Then for x € (0, 1], we have

(A +) = lim K(x) < K(x) < K(1) = % 1

which gives (52).

Remark 8. The left hand side of (52) actually holds for all z > 0 and for
x > 1, the right hand side reverses with strict inequality.

Lemma 1 ([8]). For x > 0, the inequality I'(x)I'(1/z) > 1 holds.
Theorem 6. For x > 0, the inequalities
Ta(2)Ta(1/2) > A=+, (53)
Pa(x) + Ta(1/2) 2 24720+ (54)
are satisfied. With equality when r = 1.
Proof. By applying definition (2) and Lemma 1, we have
TA(2)TA(L/2) = AT (2)A"=T(1/x)
= A\ @D (2)T(1/2)
> Af(w+%)

which gives (53). By applying the arithmetic-geometric mean inequality in
conjunction with (53), we obtain

Ca(x) +Ta(1/z) > 24/Tx(x)l'x(1/2)
1 1
> 2\ "2 (5
which gives (54). This completes the proof.
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We conclude the paper by proving the Bohr-Mollerup theorem for the A-
gamma function which characterizes the function uniquely.

Theorem 7. Let > 0 and A > 0. If Q : (0,00) — (0,00) satisfies the
conditions

(a) Q(1) = 3,
(b) Q(z +1) = 3Q(x),
(c) Q(x) is logarithmically convez,

then Q(z) = I'x(z).

Proof. Let Q(z) satisfy conditions (a)—(c). We prove that Q(z) coincides with
I'x(x) on the interval (0,1]. When this happens, then Q(z) will coincide with
I')(x) throughout its domain as a result of condition (b). Let € (0,1] and
k € Nsuch that K > 2. Then k —1 < k < k+x <k+ 1 and by virtue of the
logarithmic convexity of Q(z), we obtain

nQk—1)—InQ(k) < InQ(k+z)—InQ(k) < InQ(k+1)—In Q(k:)

&-1)-k —  (k+ta) -k —  (G+1)—k
et Q1) _ 1 QUe+x) _, QUi+
- x
—lnwggln o) <In o) (55)
But, in view of conditions (a) and (b), we have
k! E—1)! k—92)
.
Also, repeated application of condition (b) yields
Qk + 7) = x(x + 1)(a:+2)\)k...(ac+k‘— 1)Q(5L’)
Then (55) becomes
E—1 zz+1)(z+2)...(x+k—-1)Q(x) k
o (F5F) < (k= 1) [ <om(3)
which implies that
(k — D)IA%(k — 1)* (k — 1)IA—%k"
zz+1)(z+2)...(x+k—1) = Q) = x(x+1)(a:+2)...(m+k—1)(' )
51§

Substituting & by &k + 1 at the left hand side of (56) and rearranging the right
hand side yields

EINTTE" EINTFE® x+k
r(x+1)(x+2)...(z+ k) < Q) = rlx+1)(z+2)...(x+k) k

28
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Now, applying Squeeze’s theorem on (57) yields

. KAk
O = o T D@t e+ ®)

=T'\(z)

which completes the proof.
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