UDK 512.552.16

O. O. Bezushchak

Taras Shevchenko National University of Kyiv, Kyiv 01033. E-mail: bezushchak@knu.ua

Derivations of rings of infinite matrices

Abstract

We describe derivations of several important associative and Lie rings of infinite matrices over general rings of coefficients. Key words: ring of infinite matrices, derivation

Анотація. У роботі описуються диференціювання деяких важливих класів асоціативних та лієвих кілець нескінченних матриць над загальними кільцями коефіцієнтів.
Ключові слова: кільце нескінченних матриць, диференціювання

MSC2020: Pri 15B30, Sec 16W25

1. Introduction

Let R be an associative ring with unit 1_{R}, and let I be an infinite set.
Consider the ring $M(I, R)$ of $(I \times I)$-matrices over the ring R having finitely many nonzero entries in each column. The ring $M(I, R)$ is isomorphic to the ring of endomorphisms of a free $R^{o p}$-module of rank $\operatorname{card}(I)$. Here, $R^{o p}$ is a ring that is anti-isomorphic to R; and $\operatorname{card}(I)$ is the cardinality of the set I.

Consider also the subring $M_{\infty}(I, R)<M(I, R)$ of all $(I \times I)$-matrices over R having finitely many nonzero entries, and the subring $M_{r c f}(I, R)<M(I, R)$ of all ($I \times I$)-matrices over R having finitely many nonzero entries in each row and in each column.

Recall that an additive mapping $d: R \rightarrow R$ is called a derivation if

$$
d(a b)=d(a) b+a d(b) \quad \text { for arbitrary elements } \quad a, b \in R .
$$

Let V be a bi-module over a ring R. An additive mapping $d: R \rightarrow V$ is called a derivation or a 1-cocycle if $d(a b)=d(a) b+a d(b)$ for arbitrary elements $a, b \in R$. For an element $v \in V$ the mapping $d_{v}: R \rightarrow V, d_{v}(a)=a v-v a$ is a derivation.

The purpose of this paper is to determine derivations of the rings $M_{\infty}(I, R)$, $M_{r c f}(I, R), M(I, R)$. Recall that all derivations of a ring form a Lie ring; see [6].

Every derivation of the ring R gives rise to a derivation of the ring $M(I, R)$ that leaves $M_{r c f}(I, R)$ and $M_{\infty}(I, R)$ invariant. Hence, the Lie ring $\operatorname{Der}(R)$ lies in each of the Lie rings $\operatorname{Der}(M(I, R)), \operatorname{Der}\left(M_{r c f}(I, R)\right), \operatorname{Der}\left(M_{\infty}(I, R)\right)$.

For an element $a \in M(I, R)$, let

$$
\operatorname{ad}(a): x \mapsto[a, x]=a x-x a
$$

denote the inner derivation. Since $M_{\infty}(I, R)$ is a two-sided ideal in $M_{r c f}(I, R)$, it follows that $M_{\infty}(I, R)$ is invariant under any inner derivation $\operatorname{ad}(a), a \in$ $M_{r c f}(I, R)$.

Theorem 1.

(a) An arbitrary derivation d of the ring $M_{\infty}(I, R)$ is of the type

$$
d=\operatorname{ad}(a)+u, \quad \text { where } \quad a \in M_{r c f}(I, R), \quad u \in \operatorname{Der}(R)
$$

(b) an arbitrary derivation d of the ring $M(I, R)\left(\right.$ resp. $\left.M_{r c f}(I, R)\right)$ is of the type

$$
d=\operatorname{ad}(a)+u, \text { where } a \in M(I, R)\left(\text { resp. } a \in M_{r c f}(I, R)\right), u \in \operatorname{Der}(R)
$$

In [4], we proved Theorem 1 in the case when R is a field and the derivation d is linear. W. Hołubowski and S. Żurek proved Theorem 1 under the assumptions that (i) the set I is countable, (ii) the ring R is commutative, and (iii) the derivation d is R-linear; see [5].

An arbitrary associative ring R gives rise to the Lie ring

$$
R^{(-)}=(R,[a, b]=a b-b a)
$$

Using the proof of Herstein's Conjectures by K.I. Beidar, M. Brešar, M.A. Chebotar and W.S. Martindale (see [1, 2, 3]) and Theorem 1, we obtain descriptions of derivations of Lie rings

$$
\begin{gathered}
\mathfrak{g l}_{r c f}(I, R)=M_{r c f}(I, R)^{(-)}, \quad \mathfrak{g l}(I, R)=M(I, R)^{(-)} \\
\mathfrak{s l}_{\infty}(I, R)=\left[\mathfrak{g l}_{\infty}(I, R), \mathfrak{g l}_{\infty}(I, R)\right]
\end{gathered}
$$

under the assumption that $\frac{1}{2} \in R$.

Theorem 2.

(a) An arbitrary derivation d of the Lie $\operatorname{ring} \mathfrak{s l}_{\infty}(I, R)$ is of the type

$$
d=\operatorname{ad}(a)+u, \quad \text { where } \quad a \in \mathfrak{g l}_{r c f}(I, R), \quad u \in \operatorname{Der}(R)
$$

(b) an arbitrary derivation d of the Lie ring $\mathfrak{g l}(I, R)\left(\right.$ resp. $\left.\mathfrak{g l}_{r c f}(I, R)\right)$ is of the type

$$
d=\operatorname{ad}(a)+u, \text { where } \quad a \in \mathfrak{g l}(I, R)\left(\text { resp. } a \in \mathfrak{g l}_{r c f}(I, R)\right), u \in \operatorname{Der}(R)
$$

For an element $a \in R$ and indices $i, j \in I$ let $e_{i j}(a)$ denote the $(I \times I)$ matrices having the element a at the intersection of the i-th row and the j-th column, all other entries are equal to zero.

The following lemma is straightforward.
Lemma 1. Let $A=\left(a_{i j}\right)_{i, j \in I} \in M(I, R), a_{i j} \in R$. Then

$$
A=e_{k k}\left(1_{R}\right) A+A e_{k k}\left(1_{R}\right)
$$

if and only if $a_{i j}=0$ whenever $i \neq k, j \neq k$ or $i=j=k$.
Let \mathbb{Z} be the ring of integers. Then $\mathbb{Z} \cdot 1_{R}$ is a subring of the ring R. The ring $M(I, R)$ is a bimodule over the ring $M_{\infty}\left(I, \mathbb{Z} \cdot 1_{R}\right)$.

Lemma 2. For an arbitrary derivation $d: M_{\infty}\left(I, \mathbb{Z} \cdot 1_{R}\right) \rightarrow M(I, R)$ there exists a matrix $v \in M_{\infty}(I, R)$ such that

$$
\left(d-d_{v}\right)\left(e_{k k}\left(1_{R}\right)\right)=0
$$

for an arbitrary index $k \in I$.
Proof. Let

$$
d\left(e_{k k}\left(1_{R}\right)\right)=\left(a_{i j}^{(k)}\right)_{i, j \in I}, \quad k \in I, \quad a_{i j}^{(k)} \in R .
$$

We have

$$
d\left(e_{k k}\left(1_{R}\right)\right)=d\left(e_{k k}\left(1_{R}\right)\right) e_{k k}\left(1_{R}\right)+e_{k k}\left(1_{R}\right) d\left(e_{k k}\left(1_{R}\right)\right)
$$

By Lemma $1, a_{i j}^{(k)}=0$ whenever $i \neq k, j \neq k$ or $i=j=k$. Choose distinct indices $p, q \in I$. Then $e_{p p}\left(1_{R}\right) e_{q q}\left(1_{R}\right)=0$ implies

$$
\left(a_{i j}^{(p)}\right)_{i, j \in I} e_{q q}\left(1_{R}\right)+e_{p p}\left(1_{R}\right)\left(a_{k l}^{(q)}\right)_{k, l \in I}=0
$$

The (p, q)-entry of the matrix on the left hand side is

$$
a_{p q}^{(p)}+a_{p q}^{(q)}=0
$$

Let $X=\left(x_{i j}\right)_{i, j \in I}, x_{i j} \in R$. The (p, q)-entry of the matrix $\left[X, e_{k k}\left(1_{R}\right)\right]$ is equal to 0 if $p \neq k, q \neq k$; is equal to $-x_{p q}$ if $k=p$; and to $x_{p q}$ if $k=q$. The diagonal entries of the matrix $\left[X, e_{k k}\left(1_{R}\right)\right.$] are equal to zero.

Define $a_{i j}=a_{i j}^{(j)}$ for $i \neq j ; a_{i i}=0$; and $v=\left(a_{i j}\right)_{i, j \in I}$. By the above,

$$
d\left(e_{k k}\left(1_{R}\right)\right)=\left(a_{i j}^{(k)}\right)_{i, j \in I}=\left[v, e_{k k}\left(1_{R}\right)\right]
$$

for an arbitrary index $k \in I$.
The j-th column of the matrix v is equal to the j-th column of the matrix $d\left(e_{k k}\left(1_{R}\right)\right) \in M(I, R)$. Hence, only finitely many entries in the j-th column are different from zero, hence $v \in M(I, R)$. This completes the proof of the lemma.

Lemma 3. Let $v \in M(I, R)$. Then
(a) $\left[v, M_{\infty}(I, R)\right] \subseteq M_{r c f}(I, R)$ if and only if $v \in M_{r c f}(I, R)$;
(b) if $v \in M_{r c f}(I, R)$, then in fact $\left[v, M_{\infty}(I, R)\right] \subseteq M_{\infty}(I, R)$.

Proof. The assertion (b) immediately follows from the fact that $M_{\infty}(I, R)$ is a two-sided ideal in the ring $M_{r c f}(I, R)$.

Let

$$
v=\left(a_{i j}\right)_{i, j \in I} \in M(I, R), \quad\left[v, e_{k k}\left(1_{R}\right)\right] \in M_{r c f}(I, R) \quad \text { for any } \quad k \in I
$$

All entries in the k-th row of the matrix v, except for the diagonal one, are negatives of the corresponding entries in the k-th row of the matrix $\left[v, e_{k k}\left(1_{R}\right)\right]$. Since $\left[v, e_{k k}\left(1_{R}\right)\right] \in M_{r c f}(I, R)$, it follows that only finitely many entries of the k-th row of the matrix v are different from zero. Hence, $v \in M_{r c f}(I, R)$. This completes the proof of the lemma.

Now, we are ready to prove Theorem 1.
Proof. Let d be a derivation of the ring $M_{\infty}(I, R)$. By Lemma 2, there exists a matrix $v \in M(I, R)$ such that $d^{\prime}=d-d_{v}$ maps all matrix units $e_{k k}\left(1_{R}\right)$ to zero. This implies that

$$
d^{\prime}\left(e_{i j}(R)\right) \subseteq e_{i j}(R)
$$

for all indices $i, j \in I$.
Define the additive mapping $d_{i j}: R \rightarrow R$ via

$$
d^{\prime}\left(e_{i j}(a)\right)=e_{i j}\left(d_{i j}(a)\right)
$$

Clearly, $d_{i j}\left(1_{R}\right)=0$. Let $a, b \in R ; i, j, k \in I$. We have $e_{i j}(a b)=e_{i k}(a) e_{k j}(b)$. Hence,

$$
d_{i j}(a b)=d_{i k}(a) \cdot b+a \cdot d_{k j}(b)
$$

Let $b=1_{R}$. Then $d_{i j}(a)=d_{i k}(a)$. This implies that $d_{i j}$ does not depend on i, j.

Define $d=d_{i j} ; i, j \in I$. The mapping d is a derivation of the ring R. Hence, $d^{\prime} \in \operatorname{Der}(R)$. All derivations from $\operatorname{Der}(R)$ map $M_{\infty}(I, R)$ into itself. Therefore,

$$
d_{v}\left(M_{\infty}(I, R)\right) \subseteq M_{\infty}(I, R)
$$

By Lemma 3(a), it implies that $v \in M_{r c f}(I, R)$ and completes the proof of the first part of the theorem.

Let d be a derivation of the ring $M(I, R)$. Arguing as above, we find a matrix $v \in M(I, R)$ such that $u=d-d_{v} \in \operatorname{Der}(R)$. If d is a derivation of the ring $M_{r c f}(I, R)$, then the mapping d_{v} maps $M_{\infty}(I, R)$ to $M_{r c f}(I, R)$. By Lemma 3(a), $v \in M_{r c f}(I, R)$. This completes the proof of the theorem.

References

1. Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd.: On Herstein's Lie map conjectures I. Trans. Amer. Math. Soc. 2001; 353: pp. 4235-4260. doi:10.1090/S0002-9947-01-02731-3
2. Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd.: On Herstein's Lie map conjectures II. J. Algebra 2001; 238: pp. 239-264. doi:10.1006/jabr.2000.8628
3. Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd.: On Herstein's Lie map conjectures III. J. Algebra 2002; 249: pp. 59-94. doi:10.1006/jabr. 2001.9076
4. Bezushchak O.: Automorphisms and derivations of algebras of infinite matrices. Linear Algebra Appl. 2022; 650: pp. 42-59. doi:10.1016/j.laa.2022.05.020
5. Hotubowski W., Żurek S.: Lie algebras of infinite matrices: ideals and derivations, 2021. arXiv:1806.01099v2
6. Jacobson N.: Lie algebras. Dover Publ., Inc, New Yourk, 1979. Replication of the 1962 original.

Received: 15.10.2023. Accepted: 05.12.2023

