UDK 512.54

A. P. Krenevych*, A. S. Oliynyk**
* Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01601 Kyiv, Ukraine. E-mail: krenevych@knu.ua
** Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01601 Kyiv, Ukraine. E-mail: aolijnyk@gmail.com

Free groups defined by finite p-automata

Abstract

For every odd prime p we construct two p-automata with 14 inner states and prove that the group genertaed by 2 automaton permutations defined at their states is a free group of rank 2. Key words: finite automaton, p-automaton, free group Анотація. Для кожного непарного простого p ми будуємо два p автомати з 14 внутрішніми станами та доводимо, що група, породжена 2 автоматними перестановками, визначеними в їхніх станах, є вільною групою рангу 2. Ключові слова: скінченний автомат, p-автомат, вільна група

MSC2020: Pri 20E08 SEc 20E22, 20E26

1. Introduction

Explicit constructions of finite automata that define free non-abelian groups is an interesting topic in modern geometric group theory. This direction was initiated in [1] where brilliant constructions of automata were presented but the complete proof was found later in [11]. Among others, original examples of automata that define free groups appeared in $[3,6,12,10,2,9]$ and other papers.

In this note for an odd prime p we consider finite p-automata, i.e. finite automata over an alphabet of cardinality p such that at every their state a power of a fixed cycle of length p on the alphabet is defined. We present two p-automata both with 14 inner states such that the group generated by permutation defined at 2 their states is a free group of rank 2 .

The paper is organized as follows. In Section 2 we briefly recall preliminary definitions on finite automata and automaton permutation. For details one can refer to [4] and [7, 8]. In Section 3 we present the main result and in Section 4 we mention its generalization and computations with a presented construction executed with developed Python scripts.

2. Finite automata and groups defined by automata

Let X be a finite set, called alphabet, $|X| \geq 2$. The set

$$
\mathrm{X}^{*}=\bigcup_{n=0}^{\infty} \mathrm{X}^{n}
$$

of all finite words over X including the empty word Λ is a free monoid with basis X under concatenation. The set X^{+}of all non-empty words over X is a free subsemigroup of \mathbf{X}^{*}. The length of a word $w \in \mathbf{X}^{*}$ will be denoted by $|w|$.

A finite automaton \mathcal{A} over X is a triple (Q, λ, μ) such that Q is a finite set, the set of states, $\lambda: Q \times \mathrm{X} \rightarrow Q$ is the transition function and $\mu: Q \times \mathrm{X} \rightarrow \mathrm{X}$ is the output function of the automaton \mathcal{A}.

Functions λ and μ admit recursive extensions to the set $Q \times \mathrm{X}^{*}$, defined by the rules

$$
\begin{gathered}
\lambda(q, \Lambda)=q, \quad \lambda(q, x w)=\lambda(\lambda(q, x), w), \\
\mu(q, \Lambda)=\Lambda, \quad \mu(q, x w)=\mu(q, x) \mu(\lambda(q, x), w),
\end{gathered}
$$

where $q \in Q, x \in \mathbf{X}, w \in \mathbf{X}^{*}$. For every state $q \in Q$ the restriction of μ at q defines a mapping on X^{*}, that we denote by the same symbol q such that

$$
q(w)=\mu(q, w), \quad w \in \mathbf{X}^{*}
$$

A permutation $f: \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}$ is called finite automaton permutation over X if there exist a finite automaton over X and its state q such that f coincides with the mapping q defined at this state. All finite automaton permutations over X form a countable residually finite group under superposition denoted by $F G A(\mathrm{X})$. A finite automaton is called permutational if at every its state the output function defines a permutation on the alphabet. Each finite automaton permutation $g \in F G A(\mathrm{X})$ is defined by some finite permutational automaton \mathcal{A} at some state q.

Let (G, X) be a permutation group. A finite automaton over X is called G automaton if at every its state the output function defines a permutation from G. All finite automaton permutations defined by G-automata form a subgroup of $F G A(\mathrm{X})$ called finite state wreath power of (G, X). If (G, X) is a regular cyclic group of order p for a prime p then G-automaton is called p-automaton.

3. Constructions of free groups

Let p be an odd prime. Consider the alphabet $X=\{0,1, \ldots, p-1\}$. The elements of X will be treated as digits in positional numeral system with base p. It allows for to define a surjective mapping

$$
\pi: \mathrm{X}^{+} \rightarrow \mathbb{N} \cup\{0\}
$$

by the rule

$$
\pi\left(x_{0} \ldots x_{m}\right)=\sum_{i=0}^{m} x_{i} p^{i}, \quad x_{0}, \ldots, x_{m} \in \mathrm{X}, m \geq 0
$$

For arbitrary $m \geq 1$ the restriction of π on the set X^{m} defines a one-toone correspondence between X^{m} and the set of integers $\left\{0,1, \ldots, p^{m}-1\right\}$. Note, that for each integer k from this set the corresponding word over X is a representation of the number k in a positional numeral system with base p where the rightmost symbol is the most significant digit.

Denote by σ the cycle ($p-1 \ldots 10$) of length p on X . Then

$$
\sigma(x)=(x-1) \bmod p, \quad x \in \mathbf{X}
$$

Define automata $\mathcal{A}=\left(Q_{a}, \psi_{a}, \lambda_{a}\right)$ and $\mathcal{B}=\left(Q_{b}, \psi_{b}, \lambda_{b}\right)$ over X . Both sets of states Q_{a} and Q_{b} contain 14 elements, i.e.

$$
Q_{a}=\left\{a_{1}, \ldots, a_{14}\right\}, \quad Q_{b}=\left\{b_{1}, \ldots, b_{14}\right\} .
$$

Transition functions ψ_{a} and ψ_{b} are defined by Table 1 and Table 2 correspondingly.

ψ_{a}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}
0	a_{2}	a_{4}	a_{1}	a_{5}	a_{4}	a_{8}	a_{1}	a_{9}	a_{4}	a_{1}	a_{1}	a_{13}	a_{12}	a_{1}
1	a_{3}	a_{12}	a_{1}	a_{7}	a_{12}	a_{8}	a_{1}	a_{10}	a_{12}	a_{1}	a_{1}	a_{13}	a_{12}	a_{1}
x	a_{3}	a_{12}	a_{1}	a_{6}	a_{12}	a_{8}	a_{1}	a_{11}	a_{12}	a_{1}	a_{1}	a_{14}	a_{12}	a_{1}

Tab. 1. Transition function of automaton $\mathcal{A}, x \in \mathrm{X}, x \neq 0,1$

ψ_{b}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}	b_{9}	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}
0	b_{3}	b_{4}	b_{1}	b_{7}	b_{4}	b_{8}	b_{1}	b_{10}	b_{4}	b_{1}	b_{1}	b_{13}	b_{12}	b_{1}
1	b_{2}	b_{12}	b_{1}	b_{5}	b_{12}	b_{8}	b_{1}	b_{9}	b_{12}	b_{1}	b_{1}	b_{13}	b_{12}	b_{1}
x	b_{3}	b_{12}	b_{1}	b_{6}	b_{12}	b_{8}	b_{1}	b_{11}	b_{12}	b_{1}	b_{1}	b_{14}	b_{12}	b_{1}

Tab. 2. Transition function ψ_{a} of automaton $\mathcal{B}_{p}, x \in \mathbf{X}, x \neq 0,1$
Output functions λ_{a} and λ_{b} are defined by equalities

$$
\begin{aligned}
& \lambda_{a}\left(x, a_{i}\right)= \begin{cases}(x-1) \bmod p, & \text { if } i=5 \text { or } i=10 \\
x & \text { otherwise }\end{cases} \\
& \lambda_{b}\left(x, b_{i}\right)= \begin{cases}(x-1) \bmod p, & \text { if } i=5 \text { or } i=10 \\
x & \text { otherwise }\end{cases}
\end{aligned}
$$

The definition immediately implies that permutations on X defined at states a_{5}, a_{10} of \mathcal{A} and at states b_{5}, b_{10} of \mathcal{B} are σ, and trivial at all other states. It means that both automata \mathcal{A} and \mathcal{B} are p-automata.

Lemma 1. For arbitrary $n \geq 1, m \in \mathbb{Z}$ and words $u=x_{0} u_{e_{0}} \ldots u_{e_{n-1}} \in$ X^{n+1} and $v=v_{0} v_{e_{0}} \ldots v_{e_{n-1}} \in \mathrm{X}^{n+1}$ such that $v=u^{g}$ the following equalities hold: $v_{0}=x_{0}$ and

$$
\sum_{k=0}^{n-1} \psi_{X}\left(v_{e_{k}}\right) 2^{k}=\left(\sum_{k=0}^{n-1} \psi_{X}\left(u_{e_{k}}\right) 2^{k}+m\right) \bmod 2^{n}
$$

Denote by $G_{p}\left(a_{1}, b_{1}\right)$ the group generated by finite automaton permutations defined in states a_{1} and b_{1} of automata \mathcal{A}_{p} and \mathcal{B}_{p} correspondingly.

The main result of the paper is the following
Theorem 1. The group $G_{p}\left(a_{1}, b_{1}\right)$ is a free group of rank 2.
In order to prove this theorem we need some additional statements.
Lemma 2. Let $u, v, w \in \mathrm{X}^{2}, u \neq 00, v \neq 10$. Then

$$
u^{a_{1}}=u, \quad v^{b_{1}}=v, \quad w^{a_{1}}=w, \quad w^{b_{1}}=w .
$$

Proof. Directly follows from the definition of automata \mathcal{A}_{p} and \mathcal{B}_{p}.
Lemma 3. Let $x_{1}, \ldots, x_{m} \in \mathrm{X}, y_{1}, \ldots, y_{m} \in \mathrm{X}, m \geq 1$, and $k \in \mathbb{Z}$. Assume that

$$
\pi\left(x_{1} \ldots x_{m}\right)-k=\pi\left(y_{1} \ldots y_{m}\right) \bmod p
$$

Then the following equalities hold:

$$
\begin{align*}
& \left(000 x_{1} \ldots 0 x_{m}\right)^{a_{1}^{k}}=000 y_{1} \ldots 0 y_{m} \tag{3.1}\\
& \left(1011 x_{1} \ldots 1 x_{m}\right)^{a_{1}^{k}}=101 y_{1} \ldots 1 y_{m} \tag{3.2}
\end{align*}
$$

Proof. We prove equality (3.1), the proof of equality (3.2) is entirely the same. It is sufficient to consider the case $k=1$. The general statement then will follow by induction.

Definition of the automaton \mathcal{A} directly implies the equalities $\left(000 x_{1} \ldots 0 x_{m}\right)^{a_{1}}=00\left(0 x_{1} 0 x_{2} \ldots 0 x_{m}\right)^{a_{4}}=000\left(\left(x_{1}-1\right) \bmod p\right)\left(0 x_{2} \ldots 0 x_{m}\right)^{a_{i}}$, where

$$
i= \begin{cases}4, & \text { if } x_{1}=0 \\ 12 & \text { otherwise }\end{cases}
$$

Then there are two cases. The first case is $x_{1}=\ldots=x_{m}=0$. In this case

$$
\left(000 x_{1} \ldots 0 x_{m}\right)^{a_{1}}=000\left(\left(x_{1}-1\right) \bmod p\right) \ldots 0\left(\left(x_{m}-1\right) \bmod p\right)
$$

and equality (3.1) holds. In the opposite case let i be the least number such that $x_{i} \neq 0,1 \leq i \leq m$. Then
$\left(000 x_{1} \ldots 0 x_{m}\right)^{a_{1}}=000\left(\left(x_{1}-1\right) \bmod p\right) \ldots 0\left(\left(x_{i}-1\right) \bmod p\right)\left(0 x_{i+1} \ldots 0 x_{m}\right)^{a_{12}}$.
Since $(0 x w)^{a_{12}}=0 x w^{a_{12}}$ for arbitrary $x \in \mathrm{X}, w \in \mathrm{X}^{*}$, equality (3.1) holds as well.

Lemma 4. Let k be a non-negative integer and $w=x_{1} \ldots x_{m} \in \mathbf{X}^{*}, m \geq 1$, be a word such that $\pi(w)=k$. Then for arbitrary $x \in \mathrm{X}, x \neq 0,1$, the following equalities hold:

$$
\begin{align*}
& \left(000 x_{1} \ldots 0 x_{m} x x 11\right)^{a_{1}^{k+1}}=00 \underbrace{(0 p-1) \ldots(0 p-1)}_{m} x x 10, \tag{3.3}\\
& \left(101 x_{1} \ldots 1 x_{m} x x 01\right)^{b_{1}^{k+1}}=10 \underbrace{(1 p-1) \ldots(1 p-1)}_{m} x x 00 . \tag{3.4}
\end{align*}
$$

Proof. Since proofs of both equalities are quite similar we prove equality (3.3) only.

Equalities

$$
\pi\left(x_{1} \ldots x_{m}\right)-k=0=\pi(\underbrace{0 \ldots 0}_{m})
$$

and Lemma 3 imply

$$
\left(000 x_{1} \ldots 0 x_{m} x x 11\right)^{a_{1}^{k}}=00 \underbrace{(00) \ldots(00)}_{m}(x x 11)^{a_{12}^{k}}=00 \underbrace{(00) \ldots(00)}_{m} x x 11 .
$$

Then

$$
\begin{gathered}
\left(000 x_{1} \ldots 0 x_{m} x x 11\right)^{a_{1}^{k+1}}=(00 \underbrace{(00) \ldots(00)}_{m} x x 11)^{a_{1}}= \\
(00 \underbrace{(0 p-1) \ldots(0 p-1)}_{m} x x(11)^{a_{8}}=00 \underbrace{(0 p-1) \ldots(0 p-1)}_{m} x x 10 .
\end{gathered}
$$

The proof is complete.
Using similar arguments we obtain
Lemma 5. Let k be a non-negative integer and $w=x_{1} \ldots x_{m} \in \mathrm{X}^{*}, m \geq 1$, be a word such that $\pi(w)=p^{m}-k$. Then for arbitrary $x \in \mathrm{X}, x \neq 0,1$, the following equalities hold:

$$
\begin{align*}
& \left(000 x_{1} \ldots 0 x_{m} x x 1 p-1\right)^{a_{1}^{-k-1}}=0001 \underbrace{(00) \ldots(00)}_{m-1} x x 10, \tag{3.5}\\
& \left(101 x_{1} \ldots 1 x_{m} x x 0 p-1\right)^{b_{1}^{-k-1}}=1010 \underbrace{(10) \ldots(10)}_{m-1} x x 00 . \tag{3.6}
\end{align*}
$$

Proof of Theorem 1. We need to show that every reduced word in alphabet $\left\{a_{1}, b_{1}\right\}$ defines a non-trivial automaton permutation (see [5, Proposition 1.9]). By Lemma 3 both automaton permutations a_{1} and b_{1} have infinite order. Then up to conjugacy it is sufficient to show that for arbitrary non-zero integers $k_{1}, k_{2}, \ldots, k_{2 r-1}, l_{2 r}, r \geq 1$, the product

$$
g=a_{1}^{k_{1}} b_{1}^{k_{2}} \ldots a_{1}^{k_{2 r-1}} b_{1}^{k_{2 r}}
$$

A. P. KRENEVYCH, A. S. OLIYNYK

is nontrivial.
For numbers $k_{1}, k_{2}, \ldots, k_{2 r-1}, l_{2 r}$ consider words

$$
\begin{gathered}
u_{1}=x_{11} \ldots x_{1 m_{1}}, u_{2}=x_{21} \ldots y_{2 m_{2}}, \ldots \\
u_{2 r-1}=x_{2 r-11} \ldots x_{2 r-1 m_{2 r-1}}, u_{2 r}=x_{2 r 1} \ldots x_{2 r m_{2 r}}
\end{gathered}
$$

such that
$\pi\left(u_{1}\right)=\left|k_{1}\right|-1, \pi\left(u_{1}\right)=\left|k_{2}\right|-1, \ldots, \pi\left(u_{2 r-1}\right)=\left|k_{2 r-1}\right|-1, \pi\left(u_{2 r}\right)=\left|k_{2 r}\right|-1$.
Using these words we construct a word w, such that $w^{g} \neq g$. Let $x \in \mathrm{X}$, $x \neq 0,1$, and

$$
x_{i}=\left\{\begin{array}{ll}
1, & \text { if } k_{i}>0 \\
p-1, & \text { if } k_{i}<0
\end{array}, \quad 1 \leq i \leq 2 r .\right.
$$

Define words

$$
\begin{gathered}
v_{1}=0 x_{11} \ldots 0 x_{1 m 1}, \quad v_{2}=1 x_{21} \ldots 1 x_{2 m_{2}}, \ldots \\
v_{2 r-1}=0 x_{2 r-11} \ldots 0 x_{2 r-1 m 2 r-1}, \quad v_{2 r}=1 x_{2 r 1} \ldots 1 x_{2 r m_{2 r}}
\end{gathered}
$$

Consider the word

$$
w=00 v_{1} x x 1 x_{1} v_{2} x x 0 x_{2} \ldots v_{2 r-1} x x 1 x_{2 r-1} v_{2 r} x x 1 x_{2 r}
$$

Applying Lemma 4, Lemma 5 and Lemma 2 we obtain by induction

$$
\begin{gathered}
w^{a_{1}^{k_{1}}}=\left(00 v_{1} x x\right)^{a_{1}^{k_{1}}} 10 v_{2} x x 0 x_{2} \ldots v_{2 r-1} x x 1 x_{2 r-1} v_{2 r} x x 1 x_{2 r}, \\
w^{a_{1}^{k_{1}} b_{1}^{k_{2}}}=\left(00 v_{1} x x 1 x_{1} v_{2} x x\right)^{a_{1}^{k_{1}} b_{1}^{k_{2}}} 00 \ldots v_{2 r-1} x x 1 x_{2 r-1} v_{2 r} x x 1 x_{2 r}, \ldots \\
w^{a_{1}^{k_{1}} b_{1}^{k_{2}} \ldots a_{1}^{k_{2 r-1}}}=\left(00 v_{1} x x 1 x_{1} v_{2} x x 0 x_{2} \ldots v_{2 r-1} x x\right)^{a_{1}^{k_{1}} b_{1}^{k_{2}} \ldots a_{1}^{k_{2 r-1}}} 10 v_{2 r} x x 1 x_{2 r}, \\
w^{a_{1}^{k_{1}} b_{1}^{k_{2}} \ldots a_{1}^{k_{2 r-1}} b_{1}^{2 r}}= \\
\left(00 v_{1} x x 1 x_{1} v_{2} x x 0 x_{2} \ldots v_{2 r-1} x x 10 v_{2 r} x x 1 x_{2 r-1}\right)^{a_{1}^{k_{1}} b_{1}^{k_{2}} \ldots a_{1}^{k_{2 r-1}} b_{1}^{2 r}} 10 .
\end{gathered}
$$

Hence $w^{g} \neq w$. The proof is complete.

4. Generalizations and further computations

The construction of a free group of rank 2 defined by p-automata described in Section 3 can be naturally generalized on the case of a free group of rank r, $r>2$. However, the number of states of corresponding p-automata grows as r does and the proof becomes overloaded with technical details.

We developed Python scripts in order to provide further computations with finite automaton permutations a_{1} and b_{1}. For a given reduced word g in $\left\{a_{1}, b_{1}\right\}$ we calculated the least lengths of a word over X not fixed by g. For a given
reduced word g in $\left\{a_{1}, b_{1}\right\}$ and $k \geq 1$ we computed the number of words from X^{k} not fixed by g.

References

1. Aleshin S. V.: A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983; 4: pp. 12-14.
2. Bondarenko I., Kivva B.: Automaton groups and complete square complexes. Groups Geom. Dyn. 2022; 16: pp. 305-332. doi:10.4171/ggd/649
3. Brunner A.M., Sidki S.: The generation of $\mathrm{GL}(n, \mathbf{Z})$ by finite state automata. Internat. J. Algebra Comput. 1998; 8: pp. 127-139. doi:10.1142/S0218196798000077
4. Grigorchuk R.I., Nekrashevych V.V., Sushchanskii V.I.: Automata, Dynamical Systems, and Groups. Proceedings of the Steklov Institute of Mathematics 2000; 231: pp. 128-203.
5. Lyndon R.C., Schupp P.E.: Combinatorial group theory. Springer-Verlag, 1977.
6. Oliynyk A.: Free products of finite groups and groups of finitely automatic permutationss. Proceedings of the Steklov Institute of Mathematics 2000; 231: pp. 323-331.
7. Oliynyk A.: Finite state wreath powers of transformation semigroups. Semigroup Forum. 2011; 82: pp. 423-436. doi:10.1007/s00233-011-9292-z
8. Oliynyk A., Prokhorchuk V.: On exponentiation, p-automata and HNN extensions of free abelian groups. Algebra Discrete Math. 2023; 35: pp. 180-190. doi:10.12958/adm2132
9. Oliynyk A., Prokhorchuk V.: On a finite state representation of $G L(n, \mathbb{Z})$. Algebra Discrete Math. 2023; 36: pp. 74-84. doi:10.12958/adm2158
10. Steinberg B., Vorobets M., Vorobets, Y.: Automata over a binary alphabet generating free groups of even rank. Internat. J. Algebra Comput. 2011; 21: pp. 329-354. 10.1142/S0218196711006194
11. Vorobets M., Vorobets, Y.: On a free group of transformations defined by an automaton. Geom. Dedicata. 2007; 124: pp. 237-249. doi:10.1007/s10711-006-9060-5
12. Vorobets M., Vorobets, Y.: On a series of finite automata defining free transformation groups. Groups Geom. Dyn. 2010; 4: pp. 377-405. doi:10.4171/GGD/87

Received: 12.11.2023. Accepted: 22.12.2023

