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Free groups de�ned by �nite p-automata

Abstract. For every odd prime p we construct two p-automata with
14 inner states and prove that the group genertaed by 2 automaton
permutations de�ned at their states is a free group of rank 2.
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Àíîòàöiÿ. Äëÿ êîæíîãî íåïàðíîãî ïðîñòîãî p ìè áóäó¹ìî äâà p-
àâòîìàòè ç 14 âíóòðiøíiìè ñòàíàìè òà äîâîäèìî, ùî ãðóïà, ïîðîäæåíà
2 àâòîìàòíèìè ïåðåñòàíîâêàìè, âèçíà÷åíèìè â ¨õíiõ ñòàíàõ, ¹ âiëüíîþ
ãðóïîþ ðàíãó 2.
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1. Introduction

Explicit constructions of �nite automata that de�ne free non-abelian groups
is an interesting topic in modern geometric group theory. This direction was
initiated in [1] where brilliant constructions of automata were presented but
the complete proof was found later in [11]. Among others, original examples
of automata that de�ne free groups appeared in [3, 6, 12, 10, 2, 9] and other
papers.

In this note for an odd prime p we consider �nite p-automata, i.e. �nite
automata over an alphabet of cardinality p such that at every their state a
power of a �xed cycle of length p on the alphabet is de�ned. We present
two p-automata both with 14 inner states such that the group generated by
permutation de�ned at 2 their states is a free group of rank 2.

The paper is organized as follows. In Section 2 we brie�y recall preliminary
de�nitions on �nite automata and automaton permutation. For details one can
refer to [4] and [7, 8]. In Section 3 we present the main result and in Section 4
we mention its generalization and computations with a presented construction
executed with developed Python scripts.
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2. Finite automata and groups de�ned by automata

Let X be a �nite set, called alphabet, |X| ≥ 2. The set

X∗ =
∞⋃
n=0

Xn

of all �nite words over X including the empty word Λ is a free monoid with
basis X under concatenation. The set X+ of all non-empty words over X is a
free subsemigroup of X∗. The length of a word w ∈ X∗ will be denoted by |w|.

A �nite automaton A over X is a triple (Q,λ, µ) such that Q is a �nite set,
the set of states, λ : Q× X→ Q is the transition function and µ : Q× X→ X
is the output function of the automaton A.

Functions λ and µ admit recursive extensions to the set Q×X∗, de�ned by
the rules

λ(q,Λ) = q, λ(q, xw) = λ(λ(q, x), w),

µ(q,Λ) = Λ, µ(q, xw) = µ(q, x)µ(λ(q, x), w),

where q ∈ Q, x ∈ X, w ∈ X∗. For every state q ∈ Q the restriction of µ at q
de�nes a mapping on X∗, that we denote by the same symbol q such that

q(w) = µ(q, w), w ∈ X∗.

A permutation f : X∗ → X∗ is called �nite automaton permutation over X
if there exist a �nite automaton over X and its state q such that f coincides
with the mapping q de�ned at this state. All �nite automaton permutations
over X form a countable residually �nite group under superposition denoted by
FGA(X). A �nite automaton is called permutational if at every its state the
output function de�nes a permutation on the alphabet. Each �nite automaton
permutation g ∈ FGA(X) is de�ned by some �nite permutational automaton
A at some state q.

Let (G,X) be a permutation group. A �nite automaton over X is called G-
automaton if at every its state the output function de�nes a permutation from
G. All �nite automaton permutations de�ned by G-automata form a subgroup
of FGA(X) called �nite state wreath power of (G,X). If (G,X) is a regular
cyclic group of order p for a prime p then G-automaton is called p-automaton.

3. Constructions of free groups

Let p be an odd prime. Consider the alphabet X = {0, 1, . . . , p − 1}. The
elements of X will be treated as digits in positional numeral system with base
p. It allows for to de�ne a surjective mapping

π : X+ → N ∪ {0}
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by the rule

π(x0 . . . xm) =
m∑
i=0

xip
i, x0, . . . , xm ∈ X,m ≥ 0.

For arbitrary m ≥ 1 the restriction of π on the set Xm de�nes a one-to-
one correspondence between Xm and the set of integers {0, 1, . . . , pm − 1}.
Note, that for each integer k from this set the corresponding word over X is
a representation of the number k in a positional numeral system with base p
where the rightmost symbol is the most signi�cant digit.

Denote by σ the cycle (p− 1 . . . 10) of length p on X. Then

σ(x) = (x− 1) mod p, x ∈ X.

De�ne automata A = (Qa, ψa, λa) and B = (Qb, ψb, λb) over X. Both sets
of states Qa and Qb contain 14 elements, i.e.

Qa = {a1, . . . , a14}, Qb = {b1, . . . , b14}.

Transition functions ψa and ψb are de�ned by Table 1 and Table 2
correspondingly.

ψa a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14
0 a2 a4 a1 a5 a4 a8 a1 a9 a4 a1 a1 a13 a12 a1
1 a3 a12 a1 a7 a12 a8 a1 a10 a12 a1 a1 a13 a12 a1
x a3 a12 a1 a6 a12 a8 a1 a11 a12 a1 a1 a14 a12 a1

Tab. 1. Transition function of automaton A, x ∈ X, x 6= 0, 1

ψb b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

0 b3 b4 b1 b7 b4 b8 b1 b10 b4 b1 b1 b13 b12 b1
1 b2 b12 b1 b5 b12 b8 b1 b9 b12 b1 b1 b13 b12 b1
x b3 b12 b1 b6 b12 b8 b1 b11 b12 b1 b1 b14 b12 b1

Tab. 2. Transition function ψa of automaton Bp, x ∈ X, x 6= 0, 1

Output functions λa and λb are de�ned by equalities

λa(x, ai) =

{
(x− 1) mod p, if i = 5 or i = 10

x otherwise
,

λb(x, bi) =

{
(x− 1) mod p, if i = 5 or i = 10

x otherwise
.

The de�nition immediately implies that permutations on X de�ned at states
a5, a10 of A and at states b5, b10 of B are σ, and trivial at all other states. It
means that both automata A and B are p-automata.
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Lemma 1. For arbitrary n ≥ 1, m ∈ Z and words u = x0ue0 . . . uen−1 ∈
Xn+1 and v = v0ve0 . . . ven−1 ∈ Xn+1 such that v = ug the following equalities
hold: v0 = x0 and

n−1∑
k=0

ψX(vek)2k =

(
n−1∑
k=0

ψX(uek)2k +m

)
mod 2n.

Denote byGp(a1, b1) the group generated by �nite automaton permutations
de�ned in states a1 and b1 of automata Ap and Bp correspondingly.

The main result of the paper is the following

Theorem 1. The group Gp(a1, b1) is a free group of rank 2.

In order to prove this theorem we need some additional statements.

Lemma 2. Let u, v, w ∈ X2, u 6= 00, v 6= 10. Then

ua1 = u, vb1 = v, wa1 = w, wb1 = w.

Proof. Directly follows from the de�nition of automata Ap and Bp.

Lemma 3. Let x1, . . . , xm ∈ X, y1, . . . , ym ∈ X, m ≥ 1, and k ∈ Z. Assume
that

π(x1 . . . xm)− k = π(y1 . . . ym) mod p.

Then the following equalities hold:

(000x1 . . . 0xm)a
k
1 = 000y1 . . . 0ym, (3.1)

(1011x1 . . . 1xm)a
k
1 = 101y1 . . . 1ym. (3.2)

Proof. We prove equality (3.1), the proof of equality (3.2) is entirely the same.
It is su�cient to consider the case k = 1. The general statement then will follow
by induction.

De�nition of the automaton A directly implies the equalities

(000x1 . . . 0xm)a1 = 00(0x10x2 . . . 0xm)a4 = 000((x1−1) mod p)(0x2 . . . 0xm)ai ,

where

i =

{
4, if x1 = 0

12 otherwise
.

Then there are two cases. The �rst case is x1 = . . . = xm = 0. In this case

(000x1 . . . 0xm)a1 = 000((x1 − 1) mod p) . . . 0((xm − 1) mod p)

and equality (3.1) holds. In the opposite case let i be the least number such
that xi 6= 0, 1 ≤ i ≤ m. Then

(000x1 . . . 0xm)a1 = 000((x1−1) mod p) . . . 0((xi−1) mod p)(0xi+1 . . . 0xm)a12 .

Since (0xw)a12 = 0xwa12 for arbitrary x ∈ X, w ∈ X∗, equality (3.1) holds as
well.
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Lemma 4. Let k be a non-negative integer and w = x1 . . . xm ∈ X∗, m ≥ 1,
be a word such that π(w) = k. Then for arbitrary x ∈ X, x 6= 0, 1, the following
equalities hold:

(000x1 . . . 0xmxx11)a
k+1
1 = 00 (0p− 1) . . . (0p− 1)︸ ︷︷ ︸

m

xx10, (3.3)

(101x1 . . . 1xmxx01)b
k+1
1 = 10 (1p− 1) . . . (1p− 1)︸ ︷︷ ︸

m

xx00. (3.4)

Proof. Since proofs of both equalities are quite similar we prove equality (3.3)
only.

Equalities
π(x1 . . . xm)− k = 0 = π(0 . . . 0︸ ︷︷ ︸

m

)

and Lemma 3 imply

(000x1 . . . 0xmxx11)a
k
1 = 00 (00) . . . (00)︸ ︷︷ ︸

m

(xx11)a
k
12 = 00 (00) . . . (00)︸ ︷︷ ︸

m

xx11.

Then
(000x1 . . . 0xmxx11)a

k+1
1 = (00 (00) . . . (00)︸ ︷︷ ︸

m

xx11)a1 =

(00 (0p− 1) . . . (0p− 1)︸ ︷︷ ︸
m

xx(11)a8 = 00 (0p− 1) . . . (0p− 1)︸ ︷︷ ︸
m

xx10.

The proof is complete.

Using similar arguments we obtain

Lemma 5. Let k be a non-negative integer and w = x1 . . . xm ∈ X∗, m ≥ 1,
be a word such that π(w) = pm − k. Then for arbitrary x ∈ X, x 6= 0, 1, the
following equalities hold:

(000x1 . . . 0xmxx1p− 1)a
−k−1
1 = 0001 (00) . . . (00)︸ ︷︷ ︸

m−1

xx10, (3.5)

(101x1 . . . 1xmxx0p− 1)b
−k−1
1 = 1010 (10) . . . (10)︸ ︷︷ ︸

m−1

xx00. (3.6)

Proof of Theorem 1. We need to show that every reduced word in alphabet
{a1, b1} de�nes a non-trivial automaton permutation (see [5, Proposition 1.9]).
By Lemma 3 both automaton permutations a1 and b1 have in�nite order. Then
up to conjugacy it is su�cient to show that for arbitrary non-zero integers
k1, k2, . . . , k2r−1, l2r, r ≥ 1, the product

g = ak11 b
k2
1 . . . a

k2r−1

1 bk2r1 ,
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is nontrivial.
For numbers k1, k2, . . . , k2r−1, l2r consider words

u1 = x11 . . . x1m1 , u2 = x21 . . . y2m2 , . . . ,

u2r−1 = x2r−11 . . . x2r−1m2r−1 , u2r = x2r1 . . . x2rm2r

such that

π(u1) = |k1|−1, π(u1) = |k2|−1, . . . , π(u2r−1) = |k2r−1|−1, π(u2r) = |k2r|−1.

Using these words we construct a word w, such that wg 6= g. Let x ∈ X,
x 6= 0, 1, and

xi =

{
1, if ki > 0

p− 1, if ki < 0
, 1 ≤ i ≤ 2r.

De�ne words

v1 = 0x11 . . . 0x1m1, v2 = 1x21 . . . 1x2m2 , . . . ,

v2r−1 = 0x2r−11 . . . 0x2r−1m2r−1, v2r = 1x2r1 . . . 1x2rm2r .

Consider the word

w = 00v1xx1x1v2xx0x2 . . . v2r−1xx1x2r−1v2rxx1x2r.

Applying Lemma 4, Lemma 5 and Lemma 2 we obtain by induction

wa
k1
1 = (00v1xx)a

k1
1 10v2xx0x2 . . . v2r−1xx1x2r−1v2rxx1x2r,

wa
k1
1 b

k2
1 = (00v1xx1x1v2xx)a

k1
1 b

k2
1 00 . . . v2r−1xx1x2r−1v2rxx1x2r, . . .

wa
k1
1 b

k2
1 ...a

k2r−1
1 = (00v1xx1x1v2xx0x2 . . . v2r−1xx)a

k1
1 b

k2
1 ...a

k2r−1
1 10v2rxx1x2r,

wa
k1
1 b

k2
1 ...a

k2r−1
1 b2r1 =

(00v1xx1x1v2xx0x2 . . . v2r−1xx10v2rxx1x2r−1)a
k1
1 b

k2
1 ...a

k2r−1
1 b2r1 10.

Hence wg 6= w. The proof is complete.

4. Generalizations and further computations

The construction of a free group of rank 2 de�ned by p-automata described
in Section 3 can be naturally generalized on the case of a free group of rank r,
r > 2. However, the number of states of corresponding p-automata grows as r
does and the proof becomes overloaded with technical details.

We developed Python scripts in order to provide further computations with
�nite automaton permutations a1 and b1. For a given reduced word g in {a1, b1}
we calculated the least lengths of a word over X not �xed by g. For a given
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reduced word g in {a1, b1} and k ≥ 1 we computed the number of words from
Xk not �xed by g.
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