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Free groups defined by finite p-automata

Abstract. For every odd prime p we construct two p-automata with
14 inner states and prove that the group genertaed by 2 automaton
permutations defined at their states is a free group of rank 2.
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Awnoranis. /{1 KOXKHOTO HEMAPHOTO0 MPOCTOrO0 p MU OYIyeEMO IBa p-
aBToMaTw 3 14 BHYTPINIHIMYU CTAHAME Ta JTOBOINMO, IO TPYIIa, TOPOIKEHA
2 aBTOMATHHMU MI€PECTAHOBKAMM, BU3HAYUEHNMH B IXHIX CTaHAaX, € BIILHOIO
TPYIOIO PAHTy 2.

Kuro4doBi ciioBa: ckinyeHnwuii aBromar, p-aBTOMaT, BlIbHA IPyla

MSC2020: Pr1 20E08 Sec 20E22, 20E26

1. Introduction

Explicit constructions of finite automata that define free non-abelian groups
is an interesting topic in modern geometric group theory. This direction was
initiated in [1] where brilliant constructions of automata were presented but
the complete proof was found later in [11]. Among others, original examples
of automata that define free groups appeared in [3, 6, 12, 10, 2, 9] and other
papers.

In this note for an odd prime p we consider finite p-automata, i.e. finite
automata over an alphabet of cardinality p such that at every their state a
power of a fixed cycle of length p on the alphabet is defined. We present
two p-automata both with 14 inner states such that the group generated by
permutation defined at 2 their states is a free group of rank 2.

The paper is organized as follows. In Section 2 we briefly recall preliminary
definitions on finite automata and automaton permutation. For details one can
refer to [4] and [7, 8]. In Section 3 we present the main result and in Section 4
we mention its generalization and computations with a presented construction
executed with developed Python scripts.
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2. Finite automata and groups defined by automata

Let X be a finite set, called alphabet, |X| > 2. The set

)
n=0

of all finite words over X including the empty word A is a free monoid with
basis X under concatenation. The set X* of all non-empty words over X is a
free subsemigroup of X*. The length of a word w € X* will be denoted by |w|.

A finite automaton A over X is a triple (@, A, 1) such that @ is a finite set,
the set of states, A : Q x X — @ is the transition function and g : Q x X — X
is the output function of the automaton A.

Functions A and p admit recursive extensions to the set @ x X*, defined by
the rules

)‘(CLA) =4q, )\(q,xw) = )\()\(C],ZL‘),’U)),

w(g, A) = A, p(g,zw) = pl(g, ©)u(Mg, ), w),

where ¢ € Q, x € X, w € X*. For every state ¢ € ) the restriction of y at ¢
defines a mapping on X*, that we denote by the same symbol ¢ such that

q(w) = p(q,w), weX",

A permutation f : X* — X* is called finite automaton permutation over X
if there exist a finite automaton over X and its state g such that f coincides
with the mapping ¢ defined at this state. All finite automaton permutations
over X form a countable residually finite group under superposition denoted by
FGA(X). A finite automaton is called permutational if at every its state the
output function defines a permutation on the alphabet. Each finite automaton
permutation g € FGA(X) is defined by some finite permutational automaton
A at some state g.

Let (G, X) be a permutation group. A finite automaton over X is called G-
automaton if at every its state the output function defines a permutation from
G. All finite automaton permutations defined by G-automata form a subgroup
of FGA(X) called finite state wreath power of (G, X). If (G, X) is a regular
cyclic group of order p for a prime p then G-automaton is called p-automaton.

3. Constructions of free groups

Let p be an odd prime. Consider the alphabet X = {0,1,...,p — 1}. The
elements of X will be treated as digits in positional numeral system with base
p. It allows for to define a surjective mapping

m: X" = NuU{0}
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by the rule
m
(X0 ... Tm) :inpl, oy, Tm € X;m > 0.
=0

For arbitrary m > 1 the restriction of m on the set X™ defines a one-to-
one correspondence between X" and the set of integers {0,1,...,p™ — 1}.
Note, that for each integer k from this set the corresponding word over X is
a representation of the number k£ in a positional numeral system with base p
where the rightmost symbol is the most significant digit.

Denote by o the cycle (p —1...10) of length p on X. Then

o(x) =(x—1)modp, xz€X.

Define automata A = (Qq, ¥a, A\a) and B = (Qp, Yy, A\p) over X. Both sets
of states (@, and Q) contain 14 elements, i.e.

Qa:{al,...,al4}, Qb:{bl,...,b14}.

Transition functions 1, and 1, are defined by Table 1 and Table 2
correspondingly.

Ve | Q1 | G2 | a3 | as | as | ag | ar | as ag | Ao | @11 | @12 | A13 | Q14
0 a2 Gy ay | as 2 as | a1 ag a4 ai a1 a13 | @12 a1
1 asz | a2 | ap | Gy | @12 | ag | a1 | Aio | G12 | A1 ap | a1z | a12 | a1
xz as | 12 | 1 | Gg | 12 | Ag | A1 | A11 | Q12 ai a1 a14 | @12 a1

Tab. 1. Transition function of automaton A, x € X, z # 0,1

Yy | b1 | ba | b3 | by | bs | bg | b7 | bs | by | bio | b11 | b2 | b13 | b1s
O | b3 | ba [ by | b7 | by [ bg | b1 | bio| ba | b1 | b1 | b13 | bia | by
1 | by | bia| by | b5 | bio|bg | b1 | by | bia | by | by | b1z | b12 | by
T | b3 | bia | b1 | bg | bio | bg | by | bi1 [ D12 | by | b1 | b1y | D12 | by

Tab. 2. Transition function 1, of automaton B,, x € X, x # 0,1
Output functions A, and A, are defined by equalities

(x—1)modp, ifi=>5o0ri=10

T otherwise

)\a(x7ai) - { 5
(x—=1)modp, ifi=50ri=10
T otherwise '

)\b(;v, bl) = {

The definition immediately implies that permutations on X defined at states
as,a10 of A and at states bs, b9 of B are o, and trivial at all other states. It
means that both automata A and B are p-automata.
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Lemma 1. For arbitrary n > 1, m € Z and words u = ToUe, . . . Ue, , €
X" and v = voveg - - - Ve, _, € XV such that v = u9 the following equalities
hold: vo = zo and

n—1 n—1
Z ¢X(Uek)2k = (Z 1/1X(uek)2k + m) mod 2".
k=0

k=0

Denote by G(a1, b1) the group generated by finite automaton permutations
defined in states a; and b; of automata A, and B, correspondingly.
The main result of the paper is the following

Theorem 1. The group G,(a1,b1) is a free group of rank 2.
In order to prove this theorem we need some additional statements.
Lemma 2. Let u,v,w € X2, u # 00, v # 10. Then

u™ =u, =0, W =w, w"=uw.

Proof. Directly follows from the definition of automata A, and B,,.

Lemma 3. Letzy,...,2m € X, y1,...,ym € X, m > 1, and k € Z. Assume
that

m(x1...Zm) —k=7(y1...Ym) mod p.
Then the following equalities hold:

(00021 . .. 0zp)™ = 000y; . . . Oy, (3.1)

1011y ... 12y)™ = 101y ... 1ym. (3.2)

Proof. We prove equality (3.1), the proof of equality (3.2) is entirely the same.
It is sufficient to consider the case k = 1. The general statement then will follow
by induction.

Definition of the automaton A directly implies the equalities

(0001 . ..0zp)* = 00(0z10x2 . .. 02y,)* = 000((z1—1) mod p)(0zy. . .0z, )",

B 4, if Ir = 0
7= )
12  otherwise

Then there are two cases. The first case is 1 = ... = x,, = 0. In this case

where

(000z1 . ..0zp,)*" = 000((x1 — 1) mod p)...0((x,, — 1) mod p)

and equality (3.1) holds. In the opposite case let ¢ be the least number such
that z; # 0, 1 < ¢ < m. Then

(0001 . ..0zp,)* = 000((z1—1) mod p)...0((x;—1) mod p)(0ztq ... 0z, )**2.

Since (0zw)®2 = 0zw™?2 for arbitrary x € X, w € X*, equality (3.1) holds as
well.

52



FREE GROUPS DEFINED BY FINITE P-AUTOMATA

Lemma 4. Let k be a non-negative integer and w = x1...T,m € X, m > 1,
be a word such that w(w) = k. Then for arbitrary x € X, x # 0,1, the following
equalities hold:

(00021 . .. Ozpmaz1)™ " =00 (0p — 1)...(0p — 1) 2210, (3.3)

~\~
m

(10121 ... lopmaz0l) =10(1p —1). .. (1p — 1) 2200. (3.4)

m

Proof. Since proofs of both equalities are quite similar we prove equality (3.3)
only.
Equalities

and Lemma 3 imply

(00021 ... 0zpmzz11)™ = 00 (00). .. (00)(z211)™> = 00 (00). .. (00) zz11.

~———— ————
Then .
(000 . ..0zpmzell)® = (00(00)...(00) zxll)™ =
—_——
(00(0p—1)...(0p—1)zz(11)*® =00 (0p —1)...(0p — 1) zx10.

The proof is complete.
Using similar arguments we obtain

Lemma 5. Let k be a non-negative integer and w =1 ...T, € X, m > 1,
be a word such that w(w) = p™ — k. Then for arbitrary x € X, v # 0,1, the
following equalities hold:

(00021 . .. Ozmzalp — 1)% = 0001 (00). .. (00)zz10, (3.5)
~———
m—1
(10121 ... 1zmzaOp — 1)b1 ' =1010(10).. . (10) z200. (3.6)
~————
m—1

Proof of Theorem 1. We need to show that every reduced word in alphabet
{a1,b1} defines a non-trivial automaton permutation (see |5, Proposition 1.9]).
By Lemma 3 both automaton permutations a; and by have infinite order. Then
up to conjugacy it is sufficient to show that for arbitrary non-zero integers
ki,ko, ..., kor_1,lo., 7 > 1, the product

k1pk kar—17kor
g=ay'by?...a;”" b,
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is nontrivial.
For numbers k1, ko, ..., kor_1, o, consider words

Uy =T11 -+ - Limq, U2 = T21 - - - Y2mgs - -+

U2r—1 = T2r—11 - - - L2r—1mo,._1> U2r = T2r1 - - - L2rmo,.

such that
7r(u1) = “ﬁ’—l,ﬂ(ul) = ’kz’—l, .. .,W(Ugr_l) = ’kgr_ll—l,ﬂ(u%) = ’kQT’—l.

Using these words we construct a word w, such that w9 # g. Let x € X,

x # 0,1, and
1 if k; > 0
=14 B0 i<
p—1, ifki<0

Define words
v1:0m11...0x1m1, v2:1x21...1x2m2,...,

Vor—1 = 022p_11 ... OxZT—lm?r—la vor = 1Top1 ... 13727"mgr'

Consider the word
w = 00vizxlxivoxx0xs . .. Vor_1xx1x0r VT 1To).

Applying Lemma 4, Lemma 5 and Lemma 2 we obtain by induction

k1 k1
w? = (00v1zx)* 10vez20x3 . . . vor_ 1212y 1V, 2T 1Ty,

aklbk2 aklka
w® "1 = (00vizxlrivexx)® "1 00. .. vor_1zxlro, 1V, 2T 1T, . . .

ko kop_1

aF1pk2 ak?"*l aFlp a
1017 = (00vyzxlrivexalxy . .. vop_qzx)® °1 N 10vg,zx1T9,,

w
k1 bk2 kor—1 b2r
ay; 617..0q 1 =

ki;ko  Kor_1;9,
a; bi“...aq b1

(00v1zxlxiv92202s . . . Vor 12210V, 2212, —1) 10.

Hence w9 # w. The proof is complete.

4. Generalizations and further computations

The construction of a free group of rank 2 defined by p-automata described
in Section 3 can be naturally generalized on the case of a free group of rank r,
r > 2. However, the number of states of corresponding p-automata grows as r
does and the proof becomes overloaded with technical details.

We developed Python scripts in order to provide further computations with
finite automaton permutations a; and by. For a given reduced word g in {ay, b1}
we calculated the least lengths of a word over X not fixed by g. For a given

54



FREE GROUPS DEFINED BY FINITE P-AUTOMATA

reduced word ¢ in {a1,b;1} and k > 1 we computed the number of words from
XF not fixed by g.
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