Researches in Mathematics

Res. Math. **31**(2), 2023, p. 49-55 doi:10.15421/242314

ISSN (Print) 2664-4991 ISSN (Online) 2664-5009

UDK 512.54

A. P. Krenevych^{*}, A. S. Oliynyk^{**}

* Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01601 Kyiv, Ukraine. *E-mail: krenevych@knu.ua*

** Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01601 Kyiv, Ukraine. *E-mail: aolijnyk@gmail.com*

Free groups defined by finite *p*-automata

Abstract. For every odd prime p we construct two p-automata with 14 inner states and prove that the group generated by 2 automaton permutations defined at their states is a free group of rank 2. **Key words:** finite automaton, p-automaton, free group

Анотація. Для кожного непарного простого *p* ми будуємо два *p*автомати з 14 внутрішніми станами та доводимо, що група, породжена 2 автоматними перестановками, визначеними в їхніх станах, є вільною групою рангу 2.

Ключові слова: скінченний автомат, *p*-автомат, вільна група

MSC2020: Pri 20E08 Sec 20E22, 20E26

1. Introduction

Explicit constructions of finite automata that define free non-abelian groups is an interesting topic in modern geometric group theory. This direction was initiated in [1] where brilliant constructions of automata were presented but the complete proof was found later in [11]. Among others, original examples of automata that define free groups appeared in [3, 6, 12, 10, 2, 9] and other papers.

In this note for an odd prime p we consider finite p-automata, i.e. finite automata over an alphabet of cardinality p such that at every their state a power of a fixed cycle of length p on the alphabet is defined. We present two p-automata both with 14 inner states such that the group generated by permutation defined at 2 their states is a free group of rank 2.

The paper is organized as follows. In Section 2 we briefly recall preliminary definitions on finite automata and automaton permutation. For details one can refer to [4] and [7, 8]. In Section 3 we present the main result and in Section 4 we mention its generalization and computations with a presented construction executed with developed Python scripts.

© A. P. KRENEVYCH, A. S. OLIYNYK, 2023

2. Finite automata and groups defined by automata

Let X be a finite set, called alphabet, $|X| \ge 2$. The set

$$\mathsf{X}^* = \bigcup_{n=0}^{\infty} \mathsf{X}^n$$

of all finite words over X including the empty word Λ is a free monoid with basis X under concatenation. The set X⁺ of all non-empty words over X is a free subsemigroup of X^{*}. The length of a word $w \in X^*$ will be denoted by |w|.

A finite automaton \mathcal{A} over X is a triple (Q, λ, μ) such that Q is a finite set, the set of states, $\lambda : Q \times \mathsf{X} \to Q$ is the transition function and $\mu : Q \times \mathsf{X} \to \mathsf{X}$ is the output function of the automaton \mathcal{A} .

Functions λ and μ admit recursive extensions to the set $Q \times X^*$, defined by the rules

$$\begin{split} \lambda(q,\Lambda) &= q, \quad \lambda(q,xw) = \lambda(\lambda(q,x),w), \\ \mu(q,\Lambda) &= \Lambda, \quad \mu(q,xw) = \mu(q,x)\mu(\lambda(q,x),w) \end{split}$$

where $q \in Q$, $x \in X$, $w \in X^*$. For every state $q \in Q$ the restriction of μ at q defines a mapping on X^{*}, that we denote by the same symbol q such that

$$q(w) = \mu(q, w), \quad w \in \mathsf{X}^*$$

A permutation $f : X^* \to X^*$ is called finite automaton permutation over X if there exist a finite automaton over X and its state q such that f coincides with the mapping q defined at this state. All finite automaton permutations over X form a countable residually finite group under superposition denoted by FGA(X). A finite automaton is called permutational if at every its state the output function defines a permutation on the alphabet. Each finite automaton permutation $g \in FGA(X)$ is defined by some finite permutational automaton \mathcal{A} at some state q.

Let (G, X) be a permutation group. A finite automaton over X is called Gautomaton if at every its state the output function defines a permutation from G. All finite automaton permutations defined by G-automata form a subgroup of FGA(X) called finite state wreath power of (G, X). If (G, X) is a regular cyclic group of order p for a prime p then G-automaton is called p-automaton.

3. Constructions of free groups

Let p be an odd prime. Consider the alphabet $X = \{0, 1, \dots, p-1\}$. The elements of X will be treated as digits in positional numeral system with base p. It allows for to define a surjective mapping

$$\pi: \mathsf{X}^+ \to \mathbb{N} \cup \{0\}$$

by the rule

$$\pi(x_0 \dots x_m) = \sum_{i=0}^m x_i p^i, \quad x_0, \dots, x_m \in \mathsf{X}, m \ge 0.$$

For arbitrary $m \geq 1$ the restriction of π on the set X^m defines a one-toone correspondence between X^m and the set of integers $\{0, 1, \ldots, p^m - 1\}$. Note, that for each integer k from this set the corresponding word over X is a representation of the number k in a positional numeral system with base p where the rightmost symbol is the most significant digit.

Denote by σ the cycle (p-1...10) of length p on X. Then

$$\sigma(x) = (x-1) \bmod p, \quad x \in \mathsf{X}.$$

Define automata $\mathcal{A} = (Q_a, \psi_a, \lambda_a)$ and $\mathcal{B} = (Q_b, \psi_b, \lambda_b)$ over X. Both sets of states Q_a and Q_b contain 14 elements, i.e.

$$Q_a = \{a_1, \dots, a_{14}\}, \quad Q_b = \{b_1, \dots, b_{14}\}.$$

Transition functions ψ_a and ψ_b are defined by Table 1 and Table 2 correspondingly.

ψ_a	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}
0	a_2	a_4	a_1	a_5	a_4	a_8	a_1	a_9	a_4	a_1	a_1	a_{13}	a_{12}	a_1
1	a_3	a_{12}	a_1	a_7	a_{12}	a_8	a_1	a_{10}	a_{12}	a_1	a_1	a_{13}	a_{12}	a_1
x	a_3	a_{12}	a_1	a_6	a_{12}	a_8	a_1	a_{11}	a_{12}	a_1	a_1	a_{14}	a_{12}	a_1

Tab. 1. Transition function of automaton $\mathcal{A}, x \in \mathsf{X}, x \neq 0, 1$

ψ_b	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	<i>b</i> ₁₁	b_{12}	b_{13}	b_{14}
0	b_3	b_4	b_1	b_7	b_4	b_8	b_1	b_{10}	b_4	b_1	b_1	b_{13}	b_{12}	b_1
1	b_2	b_{12}	b_1	b_5	b_{12}	b_8	b_1	b_9	b_{12}	b_1	b_1	b_{13}	b_{12}	b_1
x	b_3	b_{12}	b_1	b_6	b_{12}	b_8	b_1	b_{11}	b_{12}	b_1	b_1	b_{14}	b_{12}	b_1

Tab. 2. Transition function ψ_a of automaton \mathcal{B}_p , $x \in X$, $x \neq 0, 1$

Output functions λ_a and λ_b are defined by equalities

$$\lambda_a(x, a_i) = \begin{cases} (x-1) \mod p, & \text{if } i = 5 \text{ or } i = 10 \\ x & \text{otherwise} \end{cases},$$
$$\lambda_b(x, b_i) = \begin{cases} (x-1) \mod p, & \text{if } i = 5 \text{ or } i = 10 \\ x & \text{otherwise} \end{cases}.$$

The definition immediately implies that permutations on X defined at states a_5, a_{10} of \mathcal{A} and at states b_5, b_{10} of \mathcal{B} are σ , and trivial at all other states. It means that both automata \mathcal{A} and \mathcal{B} are *p*-automata.

Lemma 1. For arbitrary $n \ge 1$, $m \in \mathbb{Z}$ and words $u = x_0 u_{e_0} \dots u_{e_{n-1}} \in \mathsf{X}^{n+1}$ and $v = v_0 v_{e_0} \dots v_{e_{n-1}} \in \mathsf{X}^{n+1}$ such that $v = u^g$ the following equalities hold: $v_0 = x_0$ and

$$\sum_{k=0}^{n-1} \psi_X(v_{e_k}) 2^k = \left(\sum_{k=0}^{n-1} \psi_X(u_{e_k}) 2^k + m\right) \mod 2^n.$$

Denote by $G_p(a_1, b_1)$ the group generated by finite automaton permutations defined in states a_1 and b_1 of automata \mathcal{A}_p and \mathcal{B}_p correspondingly.

The main result of the paper is the following

Theorem 1. The group $G_p(a_1, b_1)$ is a free group of rank 2.

In order to prove this theorem we need some additional statements.

Lemma 2. Let $u, v, w \in X^2$, $u \neq 00$, $v \neq 10$. Then

$$u^{a_1} = u, \quad v^{b_1} = v, \quad w^{a_1} = w, \quad w^{b_1} = w.$$

Proof. Directly follows from the definition of automata \mathcal{A}_p and \mathcal{B}_p .

Lemma 3. Let $x_1, \ldots, x_m \in X, y_1, \ldots, y_m \in X, m \ge 1$, and $k \in \mathbb{Z}$. Assume that

$$\pi(x_1 \dots x_m) - k = \pi(y_1 \dots y_m) \bmod p.$$

Then the following equalities hold:

$$(000x_1\dots 0x_m)^{a_1^k} = 000y_1\dots 0y_m, \tag{3.1}$$

$$(1011x_1\dots 1x_m)^{a_1^k} = 101y_1\dots 1y_m. \tag{3.2}$$

Proof. We prove equality (3.1), the proof of equality (3.2) is entirely the same. It is sufficient to consider the case k = 1. The general statement then will follow by induction.

Definition of the automaton \mathcal{A} directly implies the equalities

 $(000x_1\dots 0x_m)^{a_1} = 00(0x_10x_2\dots 0x_m)^{a_4} = 000((x_1-1) \mod p)(0x_2\dots 0x_m)^{a_i},$ where

where

$$i = \begin{cases} 4, & \text{if } x_1 = 0\\ 12 & \text{otherwise} \end{cases}$$

Then there are two cases. The first case is $x_1 = \ldots = x_m = 0$. In this case

$$(000x_1...0x_m)^{a_1} = 000((x_1-1) \mod p) \dots 0((x_m-1) \mod p)$$

and equality (3.1) holds. In the opposite case let i be the least number such that $x_i \neq 0, 1 \leq i \leq m$. Then

 $(000x_1\dots 0x_m)^{a_1} = 000((x_1-1) \mod p)\dots 0((x_i-1) \mod p)(0x_{i+1}\dots 0x_m)^{a_{12}}.$

Since $(0xw)^{a_{12}} = 0xw^{a_{12}}$ for arbitrary $x \in X$, $w \in X^*$, equality (3.1) holds as well.

Lemma 4. Let k be a non-negative integer and $w = x_1 \dots x_m \in X^*$, $m \ge 1$, be a word such that $\pi(w) = k$. Then for arbitrary $x \in X$, $x \ne 0, 1$, the following equalities hold:

$$(000x_1\dots 0x_m xx_{11})^{a_1^{k+1}} = 00\underbrace{(0p-1)\dots(0p-1)}_m xx_{10}, \qquad (3.3)$$

$$(101x_1\dots 1x_m xx01)^{b_1^{k+1}} = 10\underbrace{(1p-1)\dots(1p-1)}_m xx00.$$
(3.4)

Proof. Since proofs of both equalities are quite similar we prove equality (3.3) only.

Equalities

$$\pi(x_1\dots x_m) - k = 0 = \pi(\underbrace{0\dots 0}_m)$$

and Lemma 3 imply

$$(000x_1\dots 0x_mxx^{11})^{a_1^k} = 00\underbrace{(00)\dots(00)}_m (xx^{11})^{a_{12}^k} = 00\underbrace{(00)\dots(00)}_m xx^{11}.$$

Then

$$(000x_1\dots 0x_mxx11)^{a_1^{k+1}} = (00\underbrace{(00)\dots(00)}_m xx11)^{a_1} = (00\underbrace{(0p-1)\dots(0p-1)}_m xx(11)^{a_8} = 00\underbrace{(0p-1)\dots(0p-1)}_m xx10$$

The proof is complete.

Using similar arguments we obtain

Lemma 5. Let k be a non-negative integer and $w = x_1 \dots x_m \in X^*$, $m \ge 1$, be a word such that $\pi(w) = p^m - k$. Then for arbitrary $x \in X$, $x \ne 0, 1$, the following equalities hold:

$$(000x_1\dots 0x_mxx_1p-1)^{a_1^{-k-1}} = 0001\underbrace{(00)\dots(00)}_{m-1}xx_10, \qquad (3.5)$$

$$(101x_1\dots 1x_m xx0p-1)^{b_1^{-k-1}} = 1010 \underbrace{(10)\dots(10)}_{m-1} xx00.$$
(3.6)

Proof of Theorem 1. We need to show that every reduced word in alphabet $\{a_1, b_1\}$ defines a non-trivial automaton permutation (see [5, Proposition 1.9]). By Lemma 3 both automaton permutations a_1 and b_1 have infinite order. Then up to conjugacy it is sufficient to show that for arbitrary non-zero integers $k_1, k_2, \ldots, k_{2r-1}, l_{2r}, r \geq 1$, the product

$$g = a_1^{k_1} b_1^{k_2} \dots a_1^{k_{2r-1}} b_1^{k_{2r}},$$

53

is nontrivial.

For numbers $k_1, k_2, \ldots, k_{2r-1}, l_{2r}$ consider words

$$u_1 = x_{11} \dots x_{1m_1}, u_2 = x_{21} \dots y_{2m_2}, \dots,$$

$$u_{2r-1} = x_{2r-11} \dots x_{2r-1m_{2r-1}}, u_{2r} = x_{2r1} \dots x_{2rm_{2r}}$$

such that

$$\pi(u_1) = |k_1| - 1, \pi(u_1) = |k_2| - 1, \dots, \pi(u_{2r-1}) = |k_{2r-1}| - 1, \pi(u_{2r}) = |k_{2r}| - 1.$$

Using these words we construct a word w, such that $w^g \neq g$. Let $x \in X$, $x \neq 0, 1$, and

$$x_i = \begin{cases} 1, & \text{if } k_i > 0\\ p - 1, & \text{if } k_i < 0 \end{cases}, \quad 1 \le i \le 2r.$$

Define words

$$v_1 = 0x_{11}\dots 0x_{1m1}, \quad v_2 = 1x_{21}\dots 1x_{2m_2},\dots,$$

 $v_{2r-1} = 0x_{2r-11}\dots 0x_{2r-1m2r-1}, \quad v_{2r} = 1x_{2r1}\dots 1x_{2rm_{2r}}.$

Consider the word

$$w = 00v_1xx_1x_1v_2xx_0x_2\dots v_{2r-1}x_1x_{2r-1}v_{2r}x_1x_{2r}.$$

Applying Lemma 4, Lemma 5 and Lemma 2 we obtain by induction

$$w^{a_1^{k_1}} = (00v_1xx)^{a_1^{k_1}} 10v_2xx0x_2\dots v_{2r-1}xx1x_{2r-1}v_{2r}xx1x_{2r},$$

$$w^{a_1^{k_1}b_1^{k_2}} = (00v_1xx1x_1v_2xx)^{a_1^{k_1}b_1^{k_2}}00\dots v_{2r-1}xx1x_{2r-1}v_{2r}xx1x_{2r},\dots$$

$$w^{a_1^{k_1}b_1^{k_2}\dots a_1^{k_{2r-1}}} = (00v_1xx1x_1v_2xx0x_2\dots v_{2r-1}xx)^{a_1^{k_1}b_1^{k_2}\dots a_1^{k_{2r-1}}}10v_{2r}xx1x_{2r},$$

$$w^{a_1^{k_1}b_1^{k_2}\dots a_1^{k_{2r-1}}b_1^{2r}} =$$

 $(00v_1xx1x_1v_2xx0x_2\dots v_{2r-1}xx10v_{2r}xx1x_{2r-1})^{a_1^{k_1}b_1^{k_2}\dots a_1^{k_{2r-1}}b_1^{2r}}10.$ Hence $w^g \neq w$. The proof is complete.

4. Generalizations and further computations

The construction of a free group of rank 2 defined by *p*-automata described in Section 3 can be naturally generalized on the case of a free group of rank r, r > 2. However, the number of states of corresponding *p*-automata grows as rdoes and the proof becomes overloaded with technical details.

We developed Python scripts in order to provide further computations with finite automaton permutations a_1 and b_1 . For a given reduced word g in $\{a_1, b_1\}$ we calculated the least lengths of a word over X not fixed by g. For a given

reduced word g in $\{a_1, b_1\}$ and $k \ge 1$ we computed the number of words from X^k not fixed by g.

References

- 1. Aleshin S. V.: A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983; 4: pp. 12–14.
- 2. Bondarenko I., Kivva B.: Automaton groups and complete square complexes. Groups Geom. Dyn. 2022; 16: pp. 305-332. doi:10.4171/ggd/649
- 3. Brunner A.M., Sidki S.: The generation of $GL(n, \mathbb{Z})$ by finite state automata. Internat. J. Algebra Comput. 1998; 8: pp. 127–139. doi:10.1142/S0218196798000077
- Grigorchuk R.I., Nekrashevych V.V., Sushchanskii V.I.: Automata, Dynamical Systems, and Groups. Proceedings of the Steklov Institute of Mathematics 2000; 231: pp. 128–203.
- 5. Lyndon R.C., Schupp P.E.: Combinatorial group theory. Springer-Verlag, 1977.
- Oliynyk A.: Free products of finite groups and groups of finitely automatic permutationss. Proceedings of the Steklov Institute of Mathematics 2000; 231: pp. 323–331.
- Oliynyk A.: Finite state wreath powers of transformation semigroups. Semigroup Forum. 2011; 82: pp. 423–436. doi:10.1007/s00233-011-9292-z
- Oliynyk A., Prokhorchuk V.: On exponentiation, p-automata and HNN extensions of free abelian groups. Algebra Discrete Math. 2023; 35: pp. 180–190. doi:10.12958/adm2132
- 9. Oliynyk A., Prokhorchuk V.: On a finite state representation of $GL(n, \mathbb{Z})$. Algebra Discrete Math. 2023; 36: pp. 74–84. doi:10.12958/adm2158
- Steinberg B., Vorobets M., Vorobets, Y.: Automata over a binary alphabet generating free groups of even rank. Internat. J. Algebra Comput. 2011; 21: pp. 329–354. 10.1142/S0218196711006194
- 11. Vorobets M., Vorobets, Y.: On a free group of transformations defined by an automaton. Geom. Dedicata. 2007; 124: pp. 237-249. doi:10.1007/s10711-006-9060-5
- Vorobets M., Vorobets, Y.: On a series of finite automata defining free transformation groups. Groups Geom. Dyn. 2010; 4: pp. 377-405. doi:10.4171/GGD/87

Received: 12.11.2023. Accepted: 22.12.2023