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Virtual endomorphisms of the group pg

Abstract. A virtual endomorphism of a group G is a homomorphism
of the form ¢ : H — G, where H < G is a subgroup of finite index.
A virtual endomorphism ¢ : H — G is called simple if there are no
nontrivial normal ¢-invariant subgroups, that is, the ¢-core is trivial. We
describe all virtual endomorphisms of the plane group pg, also known
as the fundamental group of the Klein bottle. We determine which of
these virtual endomorphisms are simple, and apply these results to the
self-similar actions of the group. We prove that the group pg admits a
transitive self-similar (as well as finite-state) action of degree d if and only
if d > 2 is not an odd prime, and admits a self-replicating action of degree
d if and only if d > 6 is not a prime or a power of 2.
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Amnorangisi. Bipryansaum engomopdizmom rpynu G HA3HMBAETHCS TOMO-
vopdizm Burssny ¢ : H — G, ne H < G — niarpyna CKiHYeHHOTO iHe-
kcy. Bipryansauit engomopdizm ¢ 1 H — (G Ha3MBAETHCS MTPOCTHUM, SIKIIO
He iCHye HeTpUBIiaJbHMX HOPMAJIBHUX ¢-iHBAplaHTHUX MiArpyI, TOOTO ¢-
cepreBuHA € TpuBiaabHOW. Mu ommcyemo BCi BipTyasabHi eHmomopdizmu
IJIOCKOI TPYIH pg, TAKOXK Bigomol sik dyHIAMEHTAIhHA TPYTa TUISIIKN
Knaitna. Mu Busnagaemo, ski BipryasapHi enmomMopdizMu € mpoctuMmu, i
3aCTOCOBYEMO IIi Pe3yIbTaTH A0 CaMOMOmiOHmX miit rpymu. Mu moBoam-
MO, IO TPyTa pg JOTYCKAE TPAH3UTUBHY CAMOTIOMIOHY (TAKOXK CKIHUEHHO-
CTaHOBY) il0 cTemens d TOM 1 jmme Tomi, Komu d > 2 He € HETmapHUM
MIPOCTUM YHCJIOM, T3 JOMYCKA€ PEKYPEHTHY [if0 cTemeHs d TOml i jmiie
Tomi, Koo d > 6 He € MPOCTUM YHCJIOM ab0 CTermeHeM MBifKu.

Kuro4dosi ciooBa: BipryansHuil eH1oM0opdi3M, I0CKa Ipyma, CaMOIIOIi-
OHa, mig

MSC2020: Prr 20F65, SEc 20H15, 20E08

1. Introduction

A virtual endomorphism of a group G is a homomorphism ¢ : H — G,
where H < G is a subgroup of finite index. Virtual endomorphisms ari-
se naturally in relation to self-coverings of topological spaces, lattices in Lie
groups, groups acting on trees, complex dynamics (see [5,9,10]).
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Virtual endomorphisms are strongly connected to self-similar group acti-
ons. A group G admits a faithful transitive self-similar action if and only if
it possesses a simple virtual endomorphism ¢, where simple means that there
are no nontrivial normal ¢-invariant subgroups. The corresponding self-similar
action is produced via iterations of ¢. This connection was used to analyze
self-similar actions for a wide range of groups: free abelian groups [11], fini-
tely generated nilpotent groups [2, 3], solvable groups [1], wreath products of
abelian groups [6, 7], the affine group GL,,(Z) x Z? [4], irreducible lattices in
semisimple algebraic groups [9], p-adic analytic pro-p groups [12].

In this paper, we study virtual endomorphisms of the plane group K with
number pg in IUC notation. The group K is the fundamental group of the Klein
bottle. We describe virtual endomorphisms of K (see Section 4), and determine
which of them are simple (see Theorem 4). These results are applied to the
self-similar actions of the group. We determine which degrees are possible for
self-similar, self-replicating, and finite-state actions of K (see Theorems 5 and
6). In contrast to the abelian groups, we show that K admits faithful self-
similar actions for non-injective virtual endomorphisms (see Example 4) and
finite-state actions that are not contracting (see Example 7).

2. Crystallographic groups

We review basic information about crystallographic groups (see [8,13] for
more details).

The Euclidean group F(n) is the group of isometries of R"™. The translati-
on group T'(n) = R™ of R™ is a normal subgroup of E(n). The group E(n)
decomposes into the semidirect product:

E(n) = On(R) x R™,

where O, (R) is the orthogonal group. The group E(n) is a subgroup of the
affine group A, (R) of R™, which is the semidirect product

An(R) = GLn(R) x R™.

The elements of A,(R) are written as pairs g = (A ‘ a) for A € GL,(R) and
a € R™; here A is called the linear part of g and a its translation part. The
product of elements written in this form can be performed by the rule

(Ala)-(B|b)=(AB| Ab+a).
We identify a € R™ and the translation (E ‘ a).

Definition 1. A crystallographic group of dimension n is a discrete
cocompact subgroup of E(n). A plane group is a crystallographic group of
dimension 2.
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Definition 2. Let G be a crystallographic group. The translation subgroup
of Gis T(G) = GNT(n) < R™ The point group of G is P(G) = G/T(G) <
O, (R). The point group P(G) is a finite group consisting of linear parts of
elements of G.

The fundamental properties of crystallographic groups were determined by
Bieberbach (1912):

Theorem 1 (Bieberbach). 1) The translation subgroup T'(G) of an n-
dimensional crystallographic group G is isomorphic to Z™ and is a mazxi-
mal abelian and normal subgroup of finite index.

2) Every isomorphism between n-dimensional crystallographic groups is a
conjugation by an element of the affine group A,(R).

3) For every n € N, there are only finitely many crystallographic groups of
dimension n up to isomorphism.

We will use the following properties of subgroups in crystallographic groups
(see Theorems 4 and 17 in [8]).

Theorem 2. Let G be a crystallographic group and H < G a subgroup.
1) If H has finite index, then H is crystallographic and T(H) = HNT(G).
2) If H is normal, then H is crystallographic and T(H) = H N T(G).

3. The group pg and its subgroups of finite index

There are 17 plane groups up to isomorphism. We will be interested in one
of them — the group pg in IUC notation. We denote this group by K.
The group K is generated by two elements

L (L o]0y ,_(t 0
o 1]1)" "o -1

and has finite presentation K = (a,blaba = b). The group K consists of the
following elements:

) < 1@

K = {ame",ame”H tn,m € Z} =

o 1[0 (o SI7) et

m
The translation subgroup of K is T(K) = (a,b?) = Z? and the point group is

P<K>={<é ?)(é —01>}'

Note that the normalizer of P(K) in the group GL2(R) consists of diagonal
matrices. The group K is torsion-free, the quotient R? /K is homeomorphic to
the Klein bottle, so K is the fundamental group of the Klein bottle.

Let us describe finite index subgroups of K.




I. BONDARENKO, D. ZASHKOLNY

Theorem 3. Let H < K be a subgroup of finite index. Then H is
isomorphic to either Z? or K. More precisely:

1) Every subgroup H < K of finite inder with H = 72 is contained in
T(K) = 7% and H = AZ? for an integer matriv A € GL2(Q), here
[K : H] = 2|det A].

2) Every subgroup H < K of finite index with H = K is of the form H =
gKg~! for
0
;n3> € AQ(Q)a
[K : H| = |(2n1 4 1)ng|, where n; € Z.

_(2n1+1 O
9= 0 ng

Proof. By Theorem 2 item 1), H is a plane group. The point group P(H) is
either trivial or is equal to P(K). The only plane groups with such property
are the groups pl, pm and pg in IUC notation. The group pl is isomorphic to
72, and the group pm is not torsion-free and cannot be a subgroup of K.

If H=7?then P(H)=FE and H = T(H) < T(K) = Z*. Every subgroup
of Z? of rank two is of the form AZ? for an integer matrix A € GLy(Q) and
has finite index 2|det(A)| in K.

If H = K, then H and K are conjugate in the affine group A2(Q) by
the Bieberbach theorem. Let us determine the elements g € A9(Q) such that
gKg™! < K. Write g = (A[t), then A belongs to the normalizer of P(K),
which consists of diagonal matrices. Put A = diag(d;, d2) and t = (a3, az), and

conjugate elements of K:
n\ 1 (1 0| din
m>g _<0 1d2m> € K,

10
780 1
1 0 |n+1/2\ 4y (1 0 |di(n+1/2)
g(o “1] m >g _<0 1| dym+ 205 ) €5

for all n,m € Z. It follows that dy,ds € Z, 2as € Z, di should be odd, and it
is enough to consider ¢ with a; = 0.

In order to describe simple virtual endomorphisms of K, we will use the
structure of its normal subgroups.

Proposition 1. A subgroup N < Z2 is normal in K if and only if N =
((n,m), (n,—m)) or N = ((n,0), (0,m)) for some n,m € Z. The subgroup N
has a finite index when n,m # 0.

Proof. A subgroup N < Z? is normal in K if b"'Nb < N. We compute:

(1 0jnY), (1 0| n
b(()lmb_()lm’
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Therefore, N < Z? is normal in K when (n,m) € N whenever (n,—m) € N.
Hence, the subgroups ((n,m), (n,—m)) and N = ((n,0), (0,m)) are normal in
K for all n,m € Z.

Conversely, let N < Z2 be normal in K. If N is cyclic, then N = {((n,0))
or N = ((0,m)) (otherwise the property above does not hold). Assume N
contains elements (n,0) and (0, m) for some n,m > 1; let n,m > 1 be the
smallest numbers with this property. If N # ((n,0), (0, m)), then N contains
an element (k,l) for 0 < &k < n, 0 < [ < m. Notice that such an element
is unique. Then (2k,0),(0,2l) € N and (2k — n,0), (0,2l — m) € N. By the
minimality of n, m, we get n = 2k and m = 2[. By adding/subtracting (n,0),
(0, m) from any given element of N, we can obtain either (k,[) or (0,0). Hence
N = ((k,1), (k,=1)).

4. Virtual endomorphisms of the group pg

Let us describe virtual endomorphisms ¢ : H — K of the group K. We
consider separately the cases when H = 72, K and ¢ is injective/non-injective.
In each case, we define the matrix By € M>(Q) that will be used to determine
the simplicity of ¢.

(1) Let H = Z2?. Then H < Z? and H = AZ? for an integer matrix
A€ GLy (Q)

(1a) If ¢ is injective, then Im(¢) < T(K) = Z* and ¢ : H — Z? is of the
form

¢(x) = Bx for B € GLy(Q),

where B is admissible whenever BA has integer coefficients. We put By = B.

(1b) If ¢ is not injective, then I'm(¢) is cyclic, because K is torsion-free.
Put H = (a1,b1) and Im(¢) = (g) for g € K. Then ¢(a1) = g", ¢(b1) = g™
and ¢ : H — K is of the form:

¢(atbh) = g, k1€ Z, (4.1)

where all g € K and n,m € Z are admissible. Let g? = (ag,b2) € Z? and put

_1 nas Mmas -1
B¢ T2 (nbg mbg) AT

Then ¢(z) = Byz for every x € 2AZ*. Note that if g ¢ T(K), then by = 0.
(2) Let H= K. Then H = g1 Kg;' for some

. 2n1+1 0
g1 = 0 na

) € 42(@)

2M3

where n; € Z, ny # 0.
(2a) If ¢ is injective, then ¢ is an isomorphism between two crystallographic
groups H and Im(¢), and by the Bieberbach theorem ¢ is of the form

p(z) = gzg~! for g € 4>(Q),
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where g is such that gg1 Kg; lg=! < K. The admissible g is of the form

C(di 0
I9=\o dy

where dy,ds € QF, ao € Q satisfy the conditions:

0
az

> € 42(Q),

d1(2n1 + 1), dons, 2a0 + dong € Z
and di(2n; +1) is odd. (4.2)

Put By = diag(dy,ds), the linear part of g. Then ¢(x) = By(z) for x € HNZ.
(2b) If ¢ is not injective, then, as in the case (1b), put H = (a1, b1), and
¢ H — K is of the form (4.1). By checking the defining relation, we get

m

"9 =g = ¢ =e = n=0,

because K is torsion-free. Therefore, ¢ is of the form
p(akvh) = ¢! for k.1 € Z,

where every g € K and m € Z are admissible. In this case ¢ is never simple
(see Remark 2 below), but we still define

0 ma
_ 1 2
qu T2 <0 mb2> ’

where g2 = (az, b2) € Z2. Then ¢(z) = By(z) for x € H N Z2.

Definition 3. The ¢-core of a virtual endomorphism ¢ : H — K is the
maximal normal ¢-invariant subgroup N of K.

A virtual endomorphism ¢ is called simple if the ¢-core is trivial, that is,
there are no nontrivial ¢-invariant subgroups that are normal in K.

Lemma 1. Let B € M3(Q) and N < Z? be the mazimal B-invariant
subgroup, v.e., BN < N. Then:

1) N has finite index in Z2 if and only if x5(x) has integer coefficients;
2) N is infinite cyclic if and only if exactly one eigenvalue of B is an integer;
3) N is trivial if and only if xp(x) € Z[x] and xp(x) has no integer roots.

Proof. 1) If xg(x) = 2% +ax+b € Z[z], then B> = —bE—aB, and H = (v, Bv)
is B-invariant for every v € Z2. Hence N has a finite index. Conversely, let
N = (v,u) for linearly independent v,u € Z2. Since BN < N, the matrix of
B in the basis (v, u) has integer coefficients, and hence xp(z) € Zx].

2) The nontrivial subgroup (v) is B-invariant if and only if v is an ei-
genvector of B with integer eigenvalue. The other eigenvalue is non-integer,
since otherwise xp(x) € Z[z] and N is of finite index by item 1).

The item 3) follows immediately from the items 1) and 2) (also, see
Theorem 2.9.2 in [11]).

8
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Let us determine which matrices preserve a normal subgroup of K.
Lemma 2. Let B € M3(Q) and n,m € Z\ {0}. Then:

1) H={((n,0),(0,m)) is B-invariant if and only if B is of the form
a B
<7;7 5) (43)

2) H = ((n,m),(n,—m)) is B-invariant if and only if B is of the form

fora,B8,v,0 € Z.

L a+BHr+s E(a+B-y-0) (4.4)
2\ Ha=B+y—-0) a—-B-—v+¢ '

for a, 3,7,6 € Z.

3) H = ((n,0)) or H = ((0,m)) is B-invariant if and only if B is of the
form
k b by O
(O b2> or (bg k:) (4.5)

Proof. A subgroup H = AZ? for an integer matrix A € GLy(Q) is B-invariant
if and only if A"'BA = C has integer coefficients. Then we obtain 1),2) by
direct computation of B = ACA™! for an integer matrix C and

A:(” 0>am_<” n )
0 m m —m

The item 3) implies that (1,0) or (0,1) is an eigenvector of B with an integer
eigenvalue, and B has the required form.

forkeZ, b € Q.

The next theorem determines simple virtual endomorphisms of K.

Theorem 4. Let ¢ : H — K be a virtual endomorphism and By € M2(Q)
the associated matriz. Then ¢ is simple if and only if By is not of the forms

(4-3), (4-4). (4-5).

Proof. In all the cases (1la), (1b),(2a), (2b), the matrix By has the following
property: there exists H; < H N Z? of finite index such that

¢lm, : Hi = K, ¢(x) = Bgx for x € Hy.

If By has one of the forms (4.3), (4.4), (4.5), then there exists a nontrivial
By-invariant subgroup N < Z? that is normal in K. Since Hj is of finite index,
there exists d € N such that dN < Hj. Then dN is a normal ¢-invariant
subgroup, and ¢ is not simple.
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Conversely, assume the ¢-core N is nontrivial. If ¢ is injective, then Ny =
N N Z? is a nontrivial ¢-invariant subgroup, and it is normal in K as an
intersection of normal subgroups. Choose d € N such that dN; < H;y. Then
dNy is Bg-invariant and normal in K. Hence By has one of the forms (4.3),
(4.4), (4.5).

If ¢ is not injective, then ¢ is of the form (1b) or (2b). In the case (1b),
N < H < Z? and we can repeat the same arguments as above. In the case
(2b), the matrix By always has the form (4.5), and ¢ is never simple (here
¢(a1) = 0 for a; = (0,n2) and ((0,n2)) is a normal ¢g-invariant subgroup).

Corollary 1. If By satisfies the condition of Lemma 1 item 3), then ¢ is
simple.

Remark 1. In the case (2a), the matrix By = diag(di,ds) satisfies the
condition of Theorem 4 if and only if di,ds & Z.

Remark 2. In the case (2b), the matrix By always has the form (4.5), and
¢ is never simple.

Let us construct a few examples.

Ezample 1. The case (1a). Let H = 2Z x Z and ¢; : H — 72, ¢;(x) = Bz,

1= 1,2, where
(12 3 (1 =2
Bl( 0 —2>’ BQ<1/2 —3)'

The endomorphism ¢; is simple, but ¢3 is not, here ((2,1), (2, —1)) is a normal
¢o-invariant subgroup.

Ezample 2. The case (1b). Let H = (ab®,ab2) = {((1,1),(~1,1)) and
¢ H— K, ¢(1,1)) = g* and ¢((~1,1)) = g2 for

(1 0 |12 [ 5/2 1/2
g-(o _10>,hereB¢—<0 0).
Then ¢ is simple.
Ezample 3. The case (2a). Let H = gKg~'and ¢: H — K, ¢(x) = g lag

for
(3 0] 0 ([ 1/3 0
g—<0 11/2>,hereB¢—< 0 1).

Then ¢ is not simple, here ((0, 1)) is a normal ¢-invariant subgroup.

5. Self-similar actions of the group pg

Let X be an alphabet. Let X™* be the free monoid generated by X, that is,
the space of finite words over X with the operation of concatenation.

10
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Definition 4. A faithful action of a group G on the space X* is called
self-similar if for every ¢ € G and x € X there exist h € G and y € X such
that

g(zw) = yh(w) for every w € X*.

The size of the alphabet d = |X| is called the degree of a self-similar action.

The element h is uniquely determined by ¢ and z, and it is called the
section of g at x, denoted g|, := h. The section of an element can be defined
at every v € X* recursively by the rule g|yw = (g]2)|w for x € X, w € X*.

For every x € X, the map

¢r 2 Sta(x) = G, de(g) = gla

is a virtual endomorphism of G, here Stg(x) is the stabilizer of z and [G :
Sta(z)] < 1X].

Definition 5. A self-similar action (G, X™*) is called transitive if G acts
transitively on X.

Definition 6. A transitive self-similar action (G,X™) is called self-
replicating if the associated virtual endomorphism ¢, is surjective for some
(equiv., every) x € X.

For transitive self-similar actions, the associated virtual endomorphisms ¢,
are simple. And vice versa, if ¢ : H — G is a simple virtual endomorphism of
a group G, then G admits a transitive self-similar action of degree d = [G : H]|
(see Prop. 2.7.5 in [11]). The construction is the following. Choose a set D of
coset representatives for H in G (called a digit set), and identify the alphabet
X with D. The action (G, X™) is defined recursively: for g € G and x € X,

g(zw) = yh(w) for w e X*,

where y € X is the unique element such that y~'gz € H and h = ¢(y 'gx).
We determine possible degrees for transitive self-similar actions of K.

Theorem 5. 1) The group K admits a transitive self-similar action of
degree d if and only if d > 2 is not an odd prime.

2) The group K admits a self-replicating action of degree d if and only if
d > 6 is not a prime or a power of 2.

Proof. We need to determine which indices d = [K : H| are possible for simple
virtual endomorphisms ¢ : H — K.
For d = 2, a simple endomorphism is constructed in Example 4 below.
For every d =2n, n > 2, put H =nZ x Z and consider ¢ : H — K,

o) = <1(/)n (1)> -

11
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Then ¢ corresponds to the case (la), and the matrix By satisfies item 3) of
Lemma 1. Hence, ¢ is simple by Corollary 1.

An odd d is possible only in the case (2a). Here d = [(2n1 + 1)ng| and
By = diag(dy,d2), where the coefficients satisfy the restrictions (4):

d1(2ny + 1), dang, 2az + dans € Z,
di(2n1 +1) is odd, and
di,d2 & Z, ni € Z,ng # 0, az € Q.

We get no # +1, 2ny + 1 # +1, and d cannot be prime or a power of 2.
Conversely, for no # +1, 2ny + 1 # +1, the numbers
1 1 1

dy = —, az = —=dans

dy = ——,
Y oni+1 N9 2

satisfy the restrictions, and ¢ is simple.

2) Let ¢ be surjective. Then H is isomorphic to K, and by Remark 2,
¢ could be simple only in the case when it is injective. Then ¢ is an affine
conjugacy:

¢:9Kg' = K, ¢(z) =g 'y,

where g € A3(Q) is of the form
_(di 0] 0
g= 0 dQ a9
for di,d2 € Z \ {0}, dy is odd, and 2as € Z (see the proof of Theorem 3).

The ¢ is simple when 1/dy,1/ds & Z (see the case (2a)). Since the degree is
d=[K : gKg~!| = |d1ds|, the result follows.

Ezample 4. Let H = 7% and ¢ : H — K be given by ¢(a) = b, ¢(b*) = b.
Then ¢ is not injective, here Ker(¢) = (ab™2). The ¢ restricted to 27 x 27 is

of the form
() = (162 1(/)2> x for x € 2Z x 2Z,

The matrix satisfies the condition in Theorem 4, and hence ¢ is simple. Choose
D = {e,b}. The self-similar action of K associated to (¢, D) is given by the
following recursion over the binary alphabet X = {0,1}:

a(0w) = 0b(w), b(0w) = 1b(w),
a(lw) = 167 (w), b(lw) = Ow.

Example 5. Let H =27 x Z and ¢ : H — Z? be given by

() = <3(/)2 ;) -

12



VIRTUAL ENDOMORPHISMS OF THE GROUP PG

Then ¢ is not simple as a virtual endomorphism of Z2, here N = ((2,1)) is a
¢-invariant subgroup. However, ¢ is simple as a virtual endomorphism of K.
Choose D = {e,b,b b3}. The associated self-similar action of K is defined by
the following recursion over X = {1,2,3,4}:

a(lw) = 1(a*v?)(w), b(lw) = 2w
a(2w) = 2(a?b %) (w), b(2w) = 3w
a(3w) = 3(a’h?)(w), b(3w) = 4w
a(4w) = 4(a?b %) (w), b(4w) = 1b (w)

Example 6. Let us construct a self-replicating action of degree d = 6. We
define

¢:gKg™' = K, (3 0 0)
1 for g =
P(z) =g xg, 0 2]1/2

Then ¢ is simple, here
1/3 0
Bs = ( 0 1/2) '

Choose D = {e,a,b,b?, ab, ab®}. The respective self-replicating action over the
alphabet X = {1,2,3,4,5,6}:

a(lw) = 2w b(lw) = 3w

a(2w) = la (w), b(2w) = 5a ( )s
a(3w) = bw b(3w) = 4w

a(4w) = 6w b(4w) = 2(a _1b)(w)
a(5w) = 3a l(w), b(5w) = 6a~ (w),
a(bw) = 4a(w), b(6w) = 1(a"'b)(w).

Definition 7. A self-similar action (G, X*) is called finite-state if for every
g € G the set of its sections S(g) = {g|, : v € X*} is finite.

Definition 8. A self-similar action (G, X™) is called contracting if there
exists a finite set N’ C G such that for every g € G there exists n € N such
that g|, € N for all v € X* of length > n.

A contracting action is finite-state, but not vice versa. A finitely generated
group G admits a finite-state action if and only if G can be generated by a finite
Mealy automaton. The states of the automaton are the sections of generators.

The next theorem characterizes contracting and finite-state actions of the
group K.

Theorem 6. Let (K, X™*) be a transitive self-similar action and By the
matriz of the associated virtual endomorphism ¢.

13
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1) The (K, X*) is contracting if and only if the eigenvalues of By are less
than 1 in modulus.

2) If (K, X™) is self-replicating, then (K, X™) is finite-state if and only if it
18 contracting.

3) The group K admits a transitive finite-state (contracting) action of degree
d if and only if d > 2 is not an odd prime.

Proof. 1) The spectral radius of B is less than 1 if and only if the contacting
coefficient of ¢ is less than 1 in the sense of Def. 2.11.9 from [11], and we can
apply Prop. 2.11.11 from [11].

2) In this case, By = diag(di,d2) and di,dy € Z, see Remark 1. If |d;| < 1,
then the action is contracting and finite-state. Conversely, if |d1| > 1 or |da| >
1, then either a or b has infinitely many sections.

3) Tt is sufficient to notice that all the actions constructed in the proof of
Theorem 5 item 1) are finite-state and contracting.

The actions in Examples 4 and 6 are finite-state and contracting, but it is
not finite-state in Example 5. The next examples demonstrate that the acti-
on of K can be finite-state and not contracting, in contrast to free abelian
groups, and the property of being finite-state depends not only on the virtual
endomorphism ¢, in contract to the contracting property, but also on the choice
of a digit set D.

Ezample 7. Let H = AZ? and ¢ : H — 72, ¢(z) = Bz, where

A:G _11> B:<1}2 1(/)2>'

Then ¢ is a simple virtual endomorphism of K, the degree is 4. For the digit
set D = {e,a,b,ba}, we have the self-similar action over X = {1,2,3,4}:

a(lw) = 2w b(lw) = 3w,
a(2w) = la ( ), b(2w) = 4w,
a(3w) = 4a”H(w), b(3w) = 2b*(w),
a(4w) = 3w b(4w) = 1(b%a)(w)

This action is finite-state, here
S(a) = {e,a,a”'} and S(b) = {e, b, b* b%a}.

However, the action is not contacting, because the element g = b%a = (1,1)
satisfies

g =1gh=9 = g'i=g" forneN.
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For the digit set D = {e, b, b, b3}, we get:

a(lw) = 3b~2(w), b(lw) = 2w,
a(2w) = 4(a" 072 (w), b(2w) = 3w,
a(3w) = 1(ab®)(w), b(3w) = 4w,
a(4w) = 2b*(w), b(4w) = 1(ab")(w).

This action is not finite-state: the sections of b along the word v = 33...3 are

10.

11.

12.

13.

b2 — ab* — a?% — 3% — a0 — ...
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