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Virtual endomorphisms of the group pg

Abstract. A virtual endomorphism of a group G is a homomorphism
of the form φ : H → G, where H < G is a subgroup of �nite index.
A virtual endomorphism φ : H → G is called simple if there are no
nontrivial normal φ-invariant subgroups, that is, the φ-core is trivial. We
describe all virtual endomorphisms of the plane group pg, also known
as the fundamental group of the Klein bottle. We determine which of
these virtual endomorphisms are simple, and apply these results to the
self-similar actions of the group. We prove that the group pg admits a
transitive self-similar (as well as �nite-state) action of degree d if and only
if d ≥ 2 is not an odd prime, and admits a self-replicating action of degree
d if and only if d ≥ 6 is not a prime or a power of 2.
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Àíîòàöiÿ. Âiðòóàëüíèì åíäîìîðôiçìîì ãðóïè G íàçèâà¹òüñÿ ãîìî-
ìîðôiçì âèãëÿäó φ : H → G, äå H < G � ïiäãðóïà ñêií÷åííîãî iíäå-
êñó. Âiðòóàëüíèé åíäîìîðôiçì φ : H → G íàçèâà¹òüñÿ ïðîñòèì, ÿêùî
íå iñíó¹ íåòðèâiàëüíèõ íîðìàëüíèõ φ-iíâàðiàíòíèõ ïiäãðóï, òîáòî φ-
ñåðöåâèíà ¹ òðèâiàëüíîþ. Ìè îïèñó¹ìî âñi âiðòóàëüíi åíäîìîðôiçìè
ïëîñêî¨ ãðóïè pg, òàêîæ âiäîìî¨ ÿê ôóíäàìåíòàëüíà ãðóïà ïëÿøêè
Êëÿéíà. Ìè âèçíà÷à¹ìî, ÿêi âiðòóàëüíi åíäîìîðôiçìè ¹ ïðîñòèìè, i
çàñòîñîâó¹ìî öi ðåçóëüòàòè äî ñàìîïîäiáíèõ äié ãðóïè. Ìè äîâîäè-
ìî, ùî ãðóïà pg äîïóñêà¹ òðàíçèòèâíó ñàìîïîäiáíó (òàêîæ ñêií÷åííî-
ñòàíîâó) äiþ ñòåïåíÿ d òîäi i ëèøå òîäi, êîëè d ≥ 2 íå ¹ íåïàðíèì
ïðîñòèì ÷èñëîì, òà äîïóñêà¹ ðåêóðåíòíó äiþ ñòåïåíÿ d òîäi i ëèøå
òîäi, êîëè d ≥ 6 íå ¹ ïðîñòèì ÷èñëîì àáî ñòåïåíåì äâiéêè.

Êëþ÷îâi ñëîâà: âiðòóàëüíèé åíäîìîðôiçì, ïëîñêà ãðóïà, ñàìîïîäi-
áíà äiÿ

MSC2020: Pri 20F65, Sec 20H15, 20E08

1. Introduction

A virtual endomorphism of a group G is a homomorphism φ : H → G,
where H < G is a subgroup of �nite index. Virtual endomorphisms ari-
se naturally in relation to self-coverings of topological spaces, lattices in Lie
groups, groups acting on trees, complex dynamics (see [5, 9, 10]).
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Virtual endomorphisms are strongly connected to self-similar group acti-
ons. A group G admits a faithful transitive self-similar action if and only if
it possesses a simple virtual endomorphism φ, where simple means that there
are no nontrivial normal φ-invariant subgroups. The corresponding self-similar
action is produced via iterations of φ. This connection was used to analyze
self-similar actions for a wide range of groups: free abelian groups [11], �ni-
tely generated nilpotent groups [2, 3], solvable groups [1], wreath products of
abelian groups [6, 7], the a�ne group GLn(Z) n Z2 [4], irreducible lattices in
semisimple algebraic groups [9], p-adic analytic pro-p groups [12].

In this paper, we study virtual endomorphisms of the plane group K with
number pg in IUC notation. The groupK is the fundamental group of the Klein
bottle. We describe virtual endomorphisms ofK (see Section 4), and determine
which of them are simple (see Theorem 4). These results are applied to the
self-similar actions of the group. We determine which degrees are possible for
self-similar, self-replicating, and �nite-state actions of K (see Theorems 5 and
6). In contrast to the abelian groups, we show that K admits faithful self-
similar actions for non-injective virtual endomorphisms (see Example 4) and
�nite-state actions that are not contracting (see Example 7).

2. Crystallographic groups

We review basic information about crystallographic groups (see [8, 13] for
more details).

The Euclidean group E(n) is the group of isometries of Rn. The translati-
on group T (n) ∼= Rn of Rn is a normal subgroup of E(n). The group E(n)
decomposes into the semidirect product:

E(n) = On(R) nRn,

where On(R) is the orthogonal group. The group E(n) is a subgroup of the
a�ne group An(R) of Rn, which is the semidirect product

An(R) = GLn(R) nRn.

The elements of An(R) are written as pairs g =
(
A a

)
for A ∈ GLn(R) and

a ∈ Rn; here A is called the linear part of g and a its translation part. The
product of elements written in this form can be performed by the rule(

A a
)
·
(
B b

)
=
(
AB Ab+ a

)
.

We identify a ∈ Rn and the translation
(
E a

)
.

De�nition 1. A crystallographic group of dimension n is a discrete
cocompact subgroup of E(n). A plane group is a crystallographic group of
dimension 2.
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De�nition 2. Let G be a crystallographic group. The translation subgroup
of G is T (G) = G ∩ T (n) < Rn. The point group of G is P (G) = G/T (G) <
On(R). The point group P (G) is a �nite group consisting of linear parts of
elements of G.

The fundamental properties of crystallographic groups were determined by
Bieberbach (1912):

Theorem 1 (Bieberbach). 1) The translation subgroup T (G) of an n-
dimensional crystallographic group G is isomorphic to Zn and is a maxi-
mal abelian and normal subgroup of �nite index.

2) Every isomorphism between n-dimensional crystallographic groups is a
conjugation by an element of the a�ne group An(R).

3) For every n ∈ N, there are only �nitely many crystallographic groups of
dimension n up to isomorphism.

We will use the following properties of subgroups in crystallographic groups
(see Theorems 4 and 17 in [8]).

Theorem 2. Let G be a crystallographic group and H ≤ G a subgroup.

1) If H has �nite index, then H is crystallographic and T (H) = H ∩ T (G).

2) If H is normal, then H is crystallographic and T (H) = H ∩ T (G).

3. The group pg and its subgroups of �nite index

There are 17 plane groups up to isomorphism. We will be interested in one
of them � the group pg in IUC notation. We denote this group by K.

The group K is generated by two elements

a =

(
1 0 0
0 1 1

)
, b =

(
1 0 1/2
0 −1 0

)
∈ A2(Q)

and has �nite presentation K = 〈a, b|aba = b〉. The group K consists of the
following elements:

K =
{
amb2n, amb2n+1 : n,m ∈ Z

}
=

=

{(
1 0 n
0 1 m

)
,

(
1 0 n+ 1/2
0 −1 m

)
: n,m ∈ Z

}
.

The translation subgroup of K is T (K) = 〈a, b2〉 = Z2 and the point group is

P (K) =

{(
1 0
0 1

)
,

(
1 0
0 −1

)}
.

Note that the normalizer of P (K) in the group GL2(R) consists of diagonal
matrices. The group K is torsion-free, the quotient R2/K is homeomorphic to
the Klein bottle, so K is the fundamental group of the Klein bottle.

Let us describe �nite index subgroups of K.
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Theorem 3. Let H ≤ K be a subgroup of �nite index. Then H is
isomorphic to either Z2 or K. More precisely:

1) Every subgroup H ≤ K of �nite index with H ∼= Z2 is contained in
T (K) = Z2 and H = AZ2 for an integer matrix A ∈ GL2(Q), here
[K : H] = 2| detA|.

2) Every subgroup H ≤ K of �nite index with H ∼= K is of the form H =
gKg−1 for

g =

(
2n1 + 1 0 0

0 n2
1
2n3

)
∈ A2(Q),

[K : H] = |(2n1 + 1)n2|, where ni ∈ Z.

Proof. By Theorem 2 item 1), H is a plane group. The point group P (H) is
either trivial or is equal to P (K). The only plane groups with such property
are the groups p1, pm and pg in IUC notation. The group p1 is isomorphic to
Z2, and the group pm is not torsion-free and cannot be a subgroup of K.

If H ∼= Z2 then P (H) = E and H = T (H) ≤ T (K) = Z2. Every subgroup
of Z2 of rank two is of the form AZ2 for an integer matrix A ∈ GL2(Q) and
has �nite index 2|det(A)| in K.

If H ∼= K, then H and K are conjugate in the a�ne group A2(Q) by
the Bieberbach theorem. Let us determine the elements g ∈ A2(Q) such that
gKg−1 ≤ K. Write g = (A|t), then A belongs to the normalizer of P (K),
which consists of diagonal matrices. Put A = diag(d1, d2) and t = (a1, a2), and
conjugate elements of K:

g

(
1 0 n
0 1 m

)
g−1 =

(
1 0 d1n
0 1 d2m

)
∈ K,

g

(
1 0 n+ 1/2
0 −1 m

)
g−1 =

(
1 0 d1(n+ 1/2)
0 −1 d2m+ 2a2

)
∈ K.

for all n,m ∈ Z. It follows that d1, d2 ∈ Z, 2a2 ∈ Z, d1 should be odd, and it
is enough to consider t with a1 = 0.

In order to describe simple virtual endomorphisms of K, we will use the
structure of its normal subgroups.

Proposition 1. A subgroup N ≤ Z2 is normal in K if and only if N =
〈(n,m), (n,−m)〉 or N = 〈(n, 0), (0,m)〉 for some n,m ∈ Z. The subgroup N
has a �nite index when n,m 6= 0.

Proof. A subgroup N ≤ Z2 is normal in K if b−1Nb ≤ N . We compute:

b−1

(
1 0 n
0 1 m

)
b =

(
1 0 n
0 1 −m

)
.
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Therefore, N ≤ Z2 is normal in K when (n,m) ∈ N whenever (n,−m) ∈ N .
Hence, the subgroups 〈(n,m), (n,−m)〉 and N = 〈(n, 0), (0,m)〉 are normal in
K for all n,m ∈ Z.

Conversely, let N ≤ Z2 be normal in K. If N is cyclic, then N = 〈(n, 0)〉
or N = 〈(0,m)〉 (otherwise the property above does not hold). Assume N
contains elements (n, 0) and (0,m) for some n,m ≥ 1; let n,m ≥ 1 be the
smallest numbers with this property. If N 6= 〈(n, 0), (0,m)〉, then N contains
an element (k, l) for 0 < k < n, 0 < l < m. Notice that such an element
is unique. Then (2k, 0), (0, 2l) ∈ N and (2k − n, 0), (0, 2l − m) ∈ N . By the
minimality of n,m, we get n = 2k and m = 2l. By adding/subtracting (n, 0),
(0,m) from any given element of N , we can obtain either (k, l) or (0, 0). Hence
N = 〈(k, l), (k,−l)〉.

4. Virtual endomorphisms of the group pg

Let us describe virtual endomorphisms φ : H → K of the group K. We
consider separately the cases when H ∼= Z2,K and φ is injective/non-injective.
In each case, we de�ne the matrix Bφ ∈M2(Q) that will be used to determine
the simplicity of φ.

(1) Let H ∼= Z2. Then H ≤ Z2 and H = AZ2 for an integer matrix
A ∈ GL2(Q).

(1a) If φ is injective, then Im(φ) ≤ T (K) = Z2 and φ : H → Z2 is of the
form

φ(x) = Bx for B ∈ GL2(Q),

where B is admissible whenever BA has integer coe�cients. We put Bφ = B.
(1b) If φ is not injective, then Im(φ) is cyclic, because K is torsion-free.

Put H = 〈a1, b1〉 and Im(φ) = 〈g〉 for g ∈ K. Then φ(a1) = gn, φ(b1) = gm

and φ : H → K is of the form:

φ(ak1b
l
1) = gkn+lm, k, l ∈ Z, (4.1)

where all g ∈ K and n,m ∈ Z are admissible. Let g2 = (a2, b2) ∈ Z2 and put

Bφ = 1
2

(
na2 ma2

nb2 mb2

)
A−1.

Then φ(x) = Bφx for every x ∈ 2AZ2. Note that if g 6∈ T (K), then b2 = 0.
(2) Let H ∼= K. Then H = g1Kg

−1
1 for some

g1 =

(
2n1 + 1 0 0

0 n2
1
2n3

)
∈ A2(Q),

where ni ∈ Z, n2 6= 0.
(2a) If φ is injective, then φ is an isomorphism between two crystallographic

groups H and Im(φ), and by the Bieberbach theorem φ is of the form

φ(x) = gxg−1 for g ∈ A2(Q),
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where g is such that gg1Kg
−1
1 g−1 ≤ K. The admissible g is of the form

g =

(
d1 0 0
0 d2 a2

)
∈ A2(Q),

where d1, d2 ∈ Q∗, a2 ∈ Q satisfy the conditions:

d1(2n1 + 1), d2n2, 2a2 + d2n3 ∈ Z
and d1(2n1 + 1) is odd. (4.2)

Put Bφ = diag(d1, d2), the linear part of g. Then φ(x) = Bφ(x) for x ∈ H∩Z2.
(2b) If φ is not injective, then, as in the case (1b), put H = 〈a1, b1〉, and

φ : H → K is of the form (4.1). By checking the de�ning relation, we get

gngmgn = gm ⇒ g2n = e ⇒ n = 0,

because K is torsion-free. Therefore, φ is of the form

φ(ak1b
l
1) = glm for k, l ∈ Z,

where every g ∈ K and m ∈ Z are admissible. In this case φ is never simple
(see Remark 2 below), but we still de�ne

Bφ = 1
n2

(
0 ma2

0 mb2

)
,

where g2 = (a2, b2) ∈ Z2. Then φ(x) = Bφ(x) for x ∈ H ∩ Z2.

De�nition 3. The φ-core of a virtual endomorphism φ : H → K is the
maximal normal φ-invariant subgroup N of K.

A virtual endomorphism φ is called simple if the φ-core is trivial, that is,
there are no nontrivial φ-invariant subgroups that are normal in K.

Lemma 1. Let B ∈ M2(Q) and N ≤ Z2 be the maximal B-invariant
subgroup, i.e., BN ≤ N . Then:

1) N has �nite index in Z2 if and only if χB(x) has integer coe�cients;

2) N is in�nite cyclic if and only if exactly one eigenvalue of B is an integer;

3) N is trivial if and only if χB(x) 6∈ Z[x] and χB(x) has no integer roots.

Proof. 1) If χB(x) = x2+ax+b ∈ Z[x], then B2 = −bE−aB, and H = 〈v,Bv〉
is B-invariant for every v ∈ Z2. Hence N has a �nite index. Conversely, let
N = 〈v, u〉 for linearly independent v, u ∈ Z2. Since BN ≤ N , the matrix of
B in the basis (v, u) has integer coe�cients, and hence χB(x) ∈ Z[x].

2) The nontrivial subgroup 〈v〉 is B-invariant if and only if v is an ei-
genvector of B with integer eigenvalue. The other eigenvalue is non-integer,
since otherwise χB(x) ∈ Z[x] and N is of �nite index by item 1).

The item 3) follows immediately from the items 1) and 2) (also, see
Theorem 2.9.2 in [11]).
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Let us determine which matrices preserve a normal subgroup of K.

Lemma 2. Let B ∈M2(Q) and n,m ∈ Z \ {0}. Then:

1) H = 〈(n, 0), (0,m)〉 is B-invariant if and only if B is of the form(
α n

mβ
m
n γ δ

)
(4.3)

for α, β, γ, δ ∈ Z.

2) H = 〈(n,m), (n,−m)〉 is B-invariant if and only if B is of the form

1
2

(
α+ β + γ + δ n

m(α+ β − γ − δ)
m
n (α− β + γ − δ) α− β − γ + δ

)
(4.4)

for α, β, γ, δ ∈ Z.

3) H = 〈(n, 0)〉 or H = 〈(0,m)〉 is B-invariant if and only if B is of the
form (

k b1
0 b2

)
or

(
b1 0
b2 k

)
(4.5)

for k ∈ Z, bi ∈ Q.

Proof. A subgroup H = AZ2 for an integer matrix A ∈ GL2(Q) is B-invariant
if and only if A−1BA = C has integer coe�cients. Then we obtain 1),2) by
direct computation of B = ACA−1 for an integer matrix C and

A =

(
n 0
0 m

)
and

(
n n
m −m

)
.

The item 3) implies that (1, 0) or (0, 1) is an eigenvector of B with an integer
eigenvalue, and B has the required form.

The next theorem determines simple virtual endomorphisms of K.

Theorem 4. Let φ : H → K be a virtual endomorphism and Bφ ∈M2(Q)
the associated matrix. Then φ is simple if and only if Bφ is not of the forms
(4.3), (4.4), (4.5).

Proof. In all the cases (1a), (1b), (2a), (2b), the matrix Bφ has the following
property: there exists H1 ≤ H ∩ Z2 of �nite index such that

φ|H1 : H1 → K, φ(x) = Bφx for x ∈ H1.

If Bφ has one of the forms (4.3), (4.4), (4.5), then there exists a nontrivial
Bφ-invariant subgroup N ≤ Z2 that is normal in K. Since H1 is of �nite index,
there exists d ∈ N such that dN ≤ H1. Then dN is a normal φ-invariant
subgroup, and φ is not simple.
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Conversely, assume the φ-core N is nontrivial. If φ is injective, then N1 =
N ∩ Z2 is a nontrivial φ-invariant subgroup, and it is normal in K as an
intersection of normal subgroups. Choose d ∈ N such that dN1 ≤ H1. Then
dN1 is Bφ-invariant and normal in K. Hence Bφ has one of the forms (4.3),
(4.4), (4.5).

If φ is not injective, then φ is of the form (1b) or (2b). In the case (1b),
N ≤ H ≤ Z2 and we can repeat the same arguments as above. In the case
(2b), the matrix Bφ always has the form (4.5), and φ is never simple (here
φ(a1) = 0 for a1 = (0, n2) and 〈(0, n2)〉 is a normal φ-invariant subgroup).

Corollary 1. If Bφ satis�es the condition of Lemma 1 item 3), then φ is
simple.

Remark 1. In the case (2a), the matrix Bφ = diag(d1, d2) satis�es the
condition of Theorem 4 if and only if d1, d2 6∈ Z.

Remark 2. In the case (2b), the matrix Bφ always has the form (4.5), and
φ is never simple.

Let us construct a few examples.

Example 1. The case (1a). Let H = 2Z×Z and φi : H → Z2, φi(x) = Bix,
i = 1, 2, where

B1 =

(
1/2 3
0 −2

)
, B2 =

(
1 −2

1/2 −3

)
.

The endomorphism φ1 is simple, but φ2 is not, here 〈(2, 1), (2,−1)〉 is a normal
φ2-invariant subgroup.

Example 2. The case (1b). Let H = 〈ab2, ab−2〉 = 〈(1, 1), (−1, 1)〉 and
φ : H → K, φ((1, 1)) = g3 and φ((−1, 1)) = g−2 for

g =

(
1 0 1/2
0 −1 0

)
, here Bφ =

(
5/2 1/2
0 0

)
.

Then φ is simple.

Example 3. The case (2a). Let H = gKg−1 and φ : H → K, φ(x) = g−1xg
for

g =

(
3 0 0
0 1 1/2

)
, here Bφ =

(
1/3 0
0 1

)
.

Then φ is not simple, here 〈(0, 1)〉 is a normal φ-invariant subgroup.

5. Self-similar actions of the group pg

Let X be an alphabet. Let X∗ be the free monoid generated by X, that is,
the space of �nite words over X with the operation of concatenation.

10
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De�nition 4. A faithful action of a group G on the space X∗ is called
self-similar if for every g ∈ G and x ∈ X there exist h ∈ G and y ∈ X such
that

g(xw) = yh(w) for every w ∈ X∗.

The size of the alphabet d = |X| is called the degree of a self-similar action.

The element h is uniquely determined by g and x, and it is called the
section of g at x, denoted g|x := h. The section of an element can be de�ned
at every v ∈ X∗ recursively by the rule g|xw = (g|x)|w for x ∈ X,w ∈ X∗.

For every x ∈ X, the map

φx : StG(x)→ G, φx(g) = g|x

is a virtual endomorphism of G, here StG(x) is the stabilizer of x and [G :
StG(x)] ≤ |X|.

De�nition 5. A self-similar action (G,X∗) is called transitive if G acts
transitively on X.

De�nition 6. A transitive self-similar action (G,X∗) is called self-
replicating if the associated virtual endomorphism φx is surjective for some
(equiv., every) x ∈ X.

For transitive self-similar actions, the associated virtual endomorphisms φx
are simple. And vice versa, if φ : H → G is a simple virtual endomorphism of
a group G, then G admits a transitive self-similar action of degree d = [G : H]
(see Prop. 2.7.5 in [11]). The construction is the following. Choose a set D of
coset representatives for H in G (called a digit set), and identify the alphabet
X with D. The action (G,X∗) is de�ned recursively: for g ∈ G and x ∈ X,

g(xw) = yh(w) for w ∈ X∗,

where y ∈ X is the unique element such that y−1gx ∈ H and h = φ(y−1gx).
We determine possible degrees for transitive self-similar actions of K.

Theorem 5. 1) The group K admits a transitive self-similar action of
degree d if and only if d ≥ 2 is not an odd prime.

2) The group K admits a self-replicating action of degree d if and only if
d ≥ 6 is not a prime or a power of 2.

Proof. We need to determine which indices d = [K : H] are possible for simple
virtual endomorphisms φ : H → K.

For d = 2, a simple endomorphism is constructed in Example 4 below.
For every d = 2n, n ≥ 2, put H = nZ× Z and consider φ : H → K,

φ(x) =

(
0 1

1/n 0

)
x.

11
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Then φ corresponds to the case (1a), and the matrix Bφ satis�es item 3) of
Lemma 1. Hence, φ is simple by Corollary 1.

An odd d is possible only in the case (2a). Here d = |(2n1 + 1)n2| and
Bφ = diag(d1, d2), where the coe�cients satisfy the restrictions (4):

d1(2n1 + 1), d2n2, 2a2 + d2n3 ∈ Z,
d1(2n1 + 1) is odd, and

d1, d2 6∈ Z, ni ∈ Z, n2 6= 0, a2 ∈ Q.

We get n2 6= ±1, 2n1 + 1 6= ±1, and d cannot be prime or a power of 2.
Conversely, for n2 6= ±1, 2n1 + 1 6= ±1, the numbers

d1 =
1

2n1 + 1
, d2 =

1

n2
, a2 = −1

2
d2n3

satisfy the restrictions, and φ is simple.

2) Let φ be surjective. Then H is isomorphic to K, and by Remark 2,
φ could be simple only in the case when it is injective. Then φ is an a�ne
conjugacy:

φ : gKg−1 → K, φ(x) = g−1xg,

where g ∈ A2(Q) is of the form

g =

(
d1 0 0
0 d2 a2

)
for d1, d2 ∈ Z \ {0}, d1 is odd, and 2a2 ∈ Z (see the proof of Theorem 3).
The φ is simple when 1/d1, 1/d2 6∈ Z (see the case (2a)). Since the degree is
d = [K : gKg−1] = |d1d2|, the result follows.

Example 4. Let H = Z2 and φ : H → K be given by φ(a) = b, φ(b2) = b.
Then φ is not injective, here Ker(φ) = 〈ab−2〉. The φ restricted to 2Z× 2Z is
of the form

φ(x) =

(
1/2 1/2
0 0

)
x for x ∈ 2Z× 2Z,

The matrix satis�es the condition in Theorem 4, and hence φ is simple. Choose
D = {e, b}. The self-similar action of K associated to (φ,D) is given by the
following recursion over the binary alphabet X = {0, 1}:

a(0w) = 0b(w), b(0w) = 1b(w),

a(1w) = 1b−1(w), b(1w) = 0w.

Example 5. Let H = 2Z× Z and φ : H → Z2 be given by

φ(x) =

(
3/2 1
0 2

)
x.

12
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Then φ is not simple as a virtual endomorphism of Z2, here N = 〈(2, 1)〉 is a
φ-invariant subgroup. However, φ is simple as a virtual endomorphism of K.
Choose D = {e, b, b2, b3}. The associated self-similar action of K is de�ned by
the following recursion over X = {1, 2, 3, 4}:

a(1w) = 1(a2b2)(w), b(1w) = 2w,

a(2w) = 2(a−2b−2)(w), b(2w) = 3w,

a(3w) = 3(a2b2)(w), b(3w) = 4w,

a(4w) = 4(a−2b−2)(w), b(4w) = 1b6(w).

Example 6. Let us construct a self-replicating action of degree d = 6. We
de�ne

φ : gKg−1 → K,

φ(x) = g−1xg,
for g =

(
3 0 0
0 2 1/2

)
.

Then φ is simple, here

Bφ =

(
1/3 0
0 1/2

)
.

Choose D = {e, a, b, b2, ab, ab2}. The respective self-replicating action over the
alphabet X = {1, 2, 3, 4, 5, 6}:

a(1w) = 2w, b(1w) = 3w,

a(2w) = 1a(w), b(2w) = 5a(w),

a(3w) = 5w, b(3w) = 4w,

a(4w) = 6w, b(4w) = 2(a−1b)(w),

a(5w) = 3a−1(w), b(5w) = 6a−1(w),

a(6w) = 4a(w), b(6w) = 1(a−1b)(w).

De�nition 7. A self-similar action (G,X∗) is called �nite-state if for every
g ∈ G the set of its sections S(g) = {g|v : v ∈ X∗} is �nite.

De�nition 8. A self-similar action (G,X∗) is called contracting if there
exists a �nite set N ⊂ G such that for every g ∈ G there exists n ∈ N such
that g|v ∈ N for all v ∈ X∗ of length ≥ n.

A contracting action is �nite-state, but not vice versa. A �nitely generated
group G admits a �nite-state action if and only if G can be generated by a �nite
Mealy automaton. The states of the automaton are the sections of generators.

The next theorem characterizes contracting and �nite-state actions of the
group K.

Theorem 6. Let (K,X∗) be a transitive self-similar action and Bφ the
matrix of the associated virtual endomorphism φ.

13
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1) The (K,X∗) is contracting if and only if the eigenvalues of Bφ are less
than 1 in modulus.

2) If (K,X∗) is self-replicating, then (K,X∗) is �nite-state if and only if it
is contracting.

3) The group K admits a transitive �nite-state (contracting) action of degree
d if and only if d ≥ 2 is not an odd prime.

Proof. 1) The spectral radius of B is less than 1 if and only if the contacting
coe�cient of φ is less than 1 in the sense of Def. 2.11.9 from [11], and we can
apply Prop. 2.11.11 from [11].

2) In this case, Bφ = diag(d1, d2) and d1, d2 6∈ Z, see Remark 1. If |di| < 1,
then the action is contracting and �nite-state. Conversely, if |d1| > 1 or |d2| >
1, then either a or b2 has in�nitely many sections.

3) It is su�cient to notice that all the actions constructed in the proof of
Theorem 5 item 1) are �nite-state and contracting.

The actions in Examples 4 and 6 are �nite-state and contracting, but it is
not �nite-state in Example 5. The next examples demonstrate that the acti-
on of K can be �nite-state and not contracting, in contrast to free abelian
groups, and the property of being �nite-state depends not only on the virtual
endomorphism φ, in contract to the contracting property, but also on the choice
of a digit set D.

Example 7. Let H = AZ2 and φ : H → Z2, φ(x) = Bx, where

A =

(
1 −1
1 1

)
, B =

(
1 0

1/2 1/2

)
.

Then φ is a simple virtual endomorphism of K, the degree is 4. For the digit
set D = {e, a, b, ba}, we have the self-similar action over X = {1, 2, 3, 4}:

a(1w) = 2w, b(1w) = 3w,

a(2w) = 1a(w), b(2w) = 4w,

a(3w) = 4a−1(w), b(3w) = 2b2(w),

a(4w) = 3w, b(4w) = 1(b2a)(w).

This action is �nite-state, here

S(a) = {e, a, a−1} and S(b) = {e, b, b2, b2a}.

However, the action is not contacting, because the element g = b2a = (1, 1)
satis�es

g(1) = 1, g|1 = g ⇒ gn|1 = gn for n ∈ N.

14
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For the digit set D = {e, b, b2, b3}, we get:

a(1w) = 3b−2(w), b(1w) = 2w,

a(2w) = 4(a−1b−2)(w), b(2w) = 3w,

a(3w) = 1(ab2)(w), b(3w) = 4w,

a(4w) = 2b2(w), b(4w) = 1(ab4)(w).

This action is not �nite-state: the sections of b2 along the word v = 33 . . . 3 are

b2 −→ ab4 −→ a2b6 −→ a3b8 −→ a4b10 −→ . . . .
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