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Optimal recovery of operators in sequence
spaces

Abstract. In this paper we solve the problem of optimal recovery of the
operator Aqx = (@121, @2%2,...) on the class WqT = {(t1h1,t2h2,...) :
|hlle, < 1}, where 1 < ¢ < oo and 1 > t2 > ... > 0, and aat1 >
asts > ... > 0 are given, in the space £;. We solve this problem under
assumption that lim, e tn = lim,_ o0 ant, = 0. Information available
about a sequence x € WqT is provided either (i) by an element y € R",
n € N, whose distance to the first n coordinates (x1,...,x,) of x in the
space £, 0 < p < oo, does not exceed given € > 0, or (ii) by a sequence
y € ¢, whose distance to x in the space ¢, does not exceed €. We show
that the optimal method of recovery in this problem is either operator ®;,
with some m € Z4 (m < n in case y € ¢,), defined by

al . td al . td
or(y) = {oqyl (1_M) e CmYm (1_M) 707.”}’

adtd afutin

where y € R™ or y € £, or convex combination (1 — X\)®;,.; + A®;,, or
the operator A, itself.

Key words: optimal recovery of operators, method of recovery, recovery
with non-exact information, sequence spaces

AmnoTanisi. B 1iit pobori poss’sizana 3ajada Ha@KpaIIoro BiJHOBJICHHS
onmeparopa Aqx = (q1%1,2x2,...) Ha Kjaci WqT = {(t1h1,t2ha,...)
Hh”gq Sl},gel§q<oo7t1 >to>...2>201ait; > asty > ... >0
— 3amani, B npocropi ¢,. s 3amaga poss’szana 3a ymoBH limg, oo tn, =
limy,— 00 @ntn = 0. Indopmamiero Tpo mocIiI0BHICTL T € WqT Bucrynae (i)
eneMeHT y € R™, n € N, posramoanuii Ha Bijcrani He GijbIle 3a 3aaHe
¢ > 0 Big mepmmx n KoOpAUHAT (T1,...,Tn) €IEMEHTA T B IPOCTOPi £},
0 < p < o0, abo (ii) nocainosHicTb Y € £}, IO PO3TAIIOBAHA HA BijcTaHi HE
Ginbie 3a € Big enementy x B mpoctopi 4. [TokazaHo, 1o onTUMaJbHUM
METOIIOM BiJHOBJIEHHS B I 3ama4i € abo omeparop P, nia meakoro m €
Zy (m <ny Bunaixy y € {;), o3HadeHunii piBHicTIO

al L td al Lt
B (1) = {alyl (1,M) oy (1,M) 707,”}7

949 q 419
a1t1 Amtm

e y € R", abo y € £, abo omykia koMmGinanist (1 — X)®@;, 1 + APy, abo
cam omepaTop Aq.
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1. Introduction

Let us consider the problem of optimal recovery of operators in in sequence
spaces. These results are closely related to and somehow generalize the results
in paper [3]. We refer the interested reader to this paper for the history of
the topic and further references. In what follows we will be following notations
from this paper.

Let X,Z be complex linear spaces, Y be a complex normed space, A :
X — Y be an operator, in general non-linear, with domain D(A), W C D(A)
be some class of elements. Denote by B(Z) the set of non-empty subsets of
Z, and let I : span W — B(Z) be a given mapping called information. When
saying that information about element x € W is available we mean that some
element z € I(x) is known. An arbitrary mapping ® : Z — Y is called method
of recovery of operator A. Define the error of method of recovery ® of operator
A on the set W given information I:

E(A,W,I,®)=sup sup [[Az — D(2)]y . (1.1)
zeW zel(x)
The quantity
E(A,W,I)= inf E(A,W,I,®) (1.2)
o:. 7Y

is called the error of optimal recovery of operator A on elements of class W
given information I. Method ®* delivering inf in (1.2) (if any exists) is called
optimal.

Note that results of the present work supplement and generalize results of
paper [4] on optimal recovery of functions and its derivatives and paper [2].

The following proposition see (Corollary 1 in [3]) is a trivial yet effective
lower estimate for the error of optimal recovery (1.2). Denote by 6z the null
element of space Z and let I be some information mapping.

Corollary 1. Let A be an odd operator, & € W be such that —% € W and
0y € I(x)NI(—Z). Then

E(A W) = [|Az|x.

Similar and related lower estimates were established in many papers (see,
e.g., [4, 1]).

2. Optimal recovery of operators in sequence spaces
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In the rest of the paper we use the following notations. Let 1 < p, ¢ < o0,
{4 be the standard space of sequences x = {1 }72 |, complex-valued in general,
with corresponding norm ||z, and £, n € N, be the spaces of finite sequences.
Denote by 6 the null element of £, and by 6" the null element of £7.

For a given non-increasing sequence t = {t;}3°, of non-negative numbers
vanishing at infinity, consider bounded operator 1" : ¢, — ¢, defined as follows

Th := {tkhk}zozl, h e Eq,

and the class
W) i={x=Th : he€ly, |hly <1}

Let also the sequence oo = {oy,}32, of non-negative numbers be such that
the sequence 7 = {7, = ot} is non-increasing and is vanishing at infinity.
Define the operator A, : ¢, — ¢, by the rule Az = (aqz1, a0x2,...), © € 4.

In this section we will study the problem of optimal recovery of the operator
A, on the class W(;‘F when information mapping [ is given in one of the forms:

1. Iz = I’z = (z1,...,2,) + Ble1] X Bley), wheren € N, eq,...,6, > 0
and Ble;] = [—¢j,&;5;

2. Ir = 1)z = (21,...,7) + B [a,ﬂg], where n € N, ¢ > 0 and B [E,Zg]
is the ball of radius € in the space £} centered at 0";

3. Iz = 1. ,x = 2+ Ble,{p], where ¢ > 0 and B [e, £}] is the ball of radius
¢ in the space ¢, centered at 0.

To simplify further notations, for m € N and ¢ < oo, introduce the method
of recovery ®;, : l, — L,

4 4
@fn(a):{alal(l— qu),...,amozm(l— m(jl),O,...}, a € by,
i T,

that would be optimal in many situations. Also, we set ®f(a) :=0, a € £,

In what follows we define 22:1 ar := 0 for numeric a’s. In addition, for
simplicity we assume that ¢t > 0 for every k € N. Results in this paper remain
true in the case when 75’s (or ¢;’s) can attain zero value with the substitution
of 1/ with +o00 and 74/7, s > k with 1.

2.1. Information mapping I7(x) = (z1,...,2y) + Ble1] X ... X Bley]

Theorem 1. Letn e N, 1 < g < oo and ey,...,e5 > 0. If

we set m = n. Otherwise we choose m € Z, m <n, to be such that

m Ez m+1 5Z
1_275720 and 1 — t—q<0.
k k
k=1 k=1
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Then

m q q
E (Aas W I2) = € (Aa, W[, 12, ®7,) = (nfm + <1 - Tﬁgl) a%si) :
k=1

The proof of this theorem follows closely the proof of Theorem 1 in|3| with
necessary elementary changes. We give the proof here for completeness.

Proof. Using convexity inequality, relations |z; — ag| < e, k = 1,...,n, and
monotony of the sequence ¢, we obtain that, for x = Th € WqT and a € I2(z),

m q )

q
-
1
Az — @7, (a)[[2 = Z QpT) — Qg (1 - -t ) + Z |y |?
k=1 Tk k=m+1
m X L q oo
_ m—+ m+ q
_Z <1— 7 >ak(xk—ak)+ 7 OkTk| + Z Tk|hk|q
1 Tk Tk k=m+1
T T
m+1 q q m+1 q q q
< (1— g >ak]a:k—ak] + 41 lze|? ) + 71 | I
k=1 k k k=m+1
m q m 9]
T
_ m+1 q.9 q q q q
_Z<1_ - )O‘kgk"‘ZTmH’hk’ + g1 Z [P
k=1 k k=1 k=m+1
m q
-
m+1\ q_q q
S Z (1 T )%% + Tt1
k=1 k

To obtain the lower estimate, we choose

m 1/q
Ek EZ
up=—, k=1,...,m, and Um41 = 1—27 ,
b iy

and consider h* = (u1,...,Um+1,0,...) € lg. It is clear that Th* € WqT, as
[h*||, < 1. Furthermore, by the choice of number m we have that ¢ € IZ (T'h*).
Hence, by Corollary 1,

m
q *
(€ (Aa, W], 1)) = [[Aa(TR)|E = Zaitiui + ot U

q '€
k=1
_i 9.9 | -a 1_%% _ g +§: q_q 1_7'7qn+1
= Qe T Tl 4] T Tm QpEp )
k=1 k=1 k k=1 k

which finishes the proof.

2.2. Information mapping I (v) = (71,...,7,) + B [a,ﬁg]
We consider three cases separately: p = 0o, p < q and p > q.
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2.2.1 Case p=o0

Setting €1 = ... = &, = &, we obtain from Theorem 1 the following corollary.

Theorem 2. Letn e N, 1 <qg<ooande > 0. If
1_5(1272
g

then we set m = n. Otherwise we choose m € Z, m < n, to be such that

m m+1
1—¢&1 Z—qz and 1—€q2—<0
k=1 k
Then
E(Aa, WILIE) = & (Aa, W T2, @3)

q ’te,00 q ' te,000

1

q

(o)
k=1 Tk

2.2.2 Case0<p<yq

Theorem 3. Letn € N, 1 <g<ooand 0<p<gq. Let r € {1,...,n} be

such that . ‘
T T
af (1—241) = max af (1- 2.
Tr k=1,....m T,

If e € [0,t,] then

q 1/q
E(Aa, W), 1) = & (A, W), 17! @*):<Tg+1+ageq<1—7”;1>) ,

9 ) )
q &p q &;p T

and if € > t1 thenS(A wT ["):S(A w7l @3):71.

q77&p q7&p?

Proof. First, consider the case € € [0,t,]. For # = Th € W], ||h]; < 1, and
a € I?,(x), similarly to the proof of Theorem 1 we have

[Aaz — (a ¥
n Tq+1 + )
< ((1— Zq >aZ!xk—ak\q —r ak\xk\q) + T Z | P |4
k=1 k k k=n+1

= az 1-— n+ (]a:k ai|? qp+T+ ZVZk‘q
k=1 i

q n q/p q
q Tnt1 P q q Tnt1 q q
<alll- g |z — agl + T Saf(1l- p el + 71,
I I8
k=1
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Now, we prove the lower estimate for £ (A WqT ) Enp) Let u, and up41 be
such that t,u, = ¢ and u} —|—qu+1 =1, i.e. up = €/t, and quJrl =1-—¢9/t]. Set
h* = (0,...,0,u.,0,...,0,up+1,0,...) with w, and u,1; on positions r and

n+1, respectively Obv10usly, |h*[lq <1 and 0 € I7,(Th*). By Corollary 1,
(€ (A0 W 12)" 2 ATl = et + st i

g tep rlp Uy
_ 4.9 e\ _ 4 q.q nt1
=o€ +T+1<1 tg>7'n+1+04r€ <1— p )
Finally, consider the case ¢ > t;. For v =Th € WqT and a € I (),
o0 [e.e]
|40z — (@)% = [ Aa(TR) |2 = 3t haft < 7§ S [t < 7.
n=1 n=1

Taking h* := (1,0,...), it is clear that 6 € I, (T'h*) and by Corollary 1,
J (A Wg’lgp) > [[Aa(ThY)|lg = caty = 71
Theorem is proved.

223 Casel<g<p<

We introduce some preliminary notations. For m = 1,...,n, define

p

Tq+1 P—q

m .

Ojom = | 1 — a , J=1,...,m,
J

and set ¢; := t1 and, for m > 2,

1 —1/q
m pq /p m ap q (I/P
p—q 5. J J,m
> arGim S :T : (2.1)
j=1 j=1 J

The sequence {cp},,_; 1is non-increasing. Indeed, let §;,(8) :=
<1 W) " and consider the function

e /- a%’%qq(s‘?/p(,g) -1/q

Zaum P e I S (S}

j=1 J

Differentiating g and applying the Cauchy-Swartz inequality we have

» L a/p et
Thl — T [ 2 S p q5 m(€)
g€ =" D a8 m(€) Z x
Pg 2 P
I o) T 5n(E) oo S ap*w?%p‘%s)
Z ) (e ) (X0 | 2o
j=1 Y j=1 j=1 Tj
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Hence, ¢pmt1 = ¢(0) < g(1) = cm.
For convenience, for A € [0, 1] denote Tfn)\ = (1= N7l + A
Theorem 4. Letn € N and 1 < g < p < o0.
1. Ife < ¢, then
E(Aa, W, I2,) = € (Aa, W, IZ,, @)

q’7Ep g tep Fn
1
p=ay\ g
n pg_ p
e (o) |
j=1
2. Ife € (cp,c1] then there exist m € {1,...,n—1} such that € € (¢pm41, Cm)
and A = A(e) € [0,1) such that
1 —
e= (Dol 6mN > " : (2.2)
j=1 j=1 J

Then
E(Aa, WL IM) = & (Aa, Wy I, @7 3)

qep q > ep TmA

pP—q q
P

. m Pq

_ q P—aq 5.

= | it | Do) m(N) ,
7j=1

where ®y \ = AL, + (1 —A)®p 4.

3. Ife>c thenS(Aa,WT I ) :€(AQ,WT I <I>3) =7.

qtep q7Ep)
Proof. Let m € {0,...,n}, A € [0,1] and @ be either @, or 7, or ¢, . For
ze W]l and a € I (),

m +4 N +4 N q o9
m, m,
Aoz = ®(a)| <> |on | 1— i (z1, — ag) + K + ) offaglf
k=1 k=m+1
m Tq N m o]
SZ 1——7:(} aZ|xk—aqu+ZTg%A]hk|q+ Z |
k=1 k k=1 k=m+1

Using the Holder inequality with parameters p/(p — ¢q) and p/q to estimate the
first term and inequality Tg < Tﬁl vhk=m+1,m+2,..., we obtain
m

1-4 q
m pq_ P p o0

4oz = ®(a); < {Zagwmm} { rmk—aﬂ} A il
k=1 k=1 k=1

m pq_ 1-
k=1

sk |
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which proves the estimate from above.
Now, we turn to the proof of lower estimate. First, let ¢ < ¢,, and define

9 —1
car? 51/p n. pg v
R k k,n pP—q _
Uy = ————— Zaj djm , k=1,...,n,
ke ;
J=1
and
n 1/q
— 1— q
Up+1 ¢ uk .
k=1
Consider h* := (u1,...,Un+1,0,...). Evidently, u,11 is well-defined as
— prq
n n a/p n Oéﬁ 5‘]/1’ q
q q k k,n €
VY DU B pic s S
’ Tk ch
k=1 j=1 k=1

|h*llg =1 and 6 € I, (Th*) as }_;'_, t} h = €P. Hence, by Corollary 1,

(€ (Aa, W, T2 )" > [[Aa(THY)|

o= q/p o= ’ q
_~q pP—q P—q .
—¢ E af 6k7n E o; Ojm + Tyt
k=1 j=1

_pq_ _4
n aP 9 5‘1/17 n pq_ p
—7d g1k kn al 4
n+1 q i Yin
T
k=1

j=1

_4
o - q/p Tq+1
— ~q pP—q . P—q __n q
=g E % djm E af 5,%” (1 - ) + T
j=1 k=1 k

p
n. pe 4 p—a\ *
_ 9 q . p—q o n+1
=Tp 1 TE (g ay (l Tq>
_ k
k=1

Next, let m € {1,2,...,n — 1} be such that ¢;,11 <& <¢p and A = A €
[0,1) be defined by (2.2). Set

p—q <1/p m —1/p
eaf 10, (N) 2o
up 1= 0 ;ak 3im(N) , k=1,...,m,

and consider h* = (u1,...,un,0,...). Clearly, ||h*|; = 1 and 0 € I, (Th").

Using Corollary 1, we obtain the desired lower estimate for £ (Aa, WqT ) gp).

Finally, let ¢ > ¢;. Consider A* := (1,0,0,...). Since ¢; = t1, we have

¢ € 1,(Th*). By Corollary 1, £ (Aa, Wg,[gp) > ||Aa(ThY)|, = aft] = 7.

lg
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2.3. Information mapping I(z) = I. ,(z) := 2 + B¢, ()]
First, let p = co. As a limiting case of Theorem 2 we have.

Theorem 5. Let 1 < g < oo and € > 0. Choose m € Zy to be such that

m 1 m+11
1—5qzt—qZO and 1—€qzt—q<0.
k=1 "k k=1 k

Then
E(Aa W] Loo) = € (Aa, W, Lz o0, O},

1
m 74 . q
_ q q q _ m+
=|Tni1 t¢ E ozk(l q)
Tk

k=1

Next, let 1 < ¢ < o0, 0 < p <gq. For n,r € N, define

Tt
n
Ay o=l (1— q >,

Tr

and denote by 7, the largest r € {1,...,n} such that

Arpn = max Agp.
k=1,...n

Note that the sequence {r,}>°, is non-decreasing. Indeed, otherwise if r, >
rnt+1 for some n € N then we have

q q
T, T,
1 1
al (1—--"2)>a8 (11— 3%
" Trn nr TT7L+1
q q
T, T,
2 2
al (1-222) <l (1--2%2),
" Trn mr Trn«l»l

q q q q
Tn+1 Tn42 Tnt1 Tn42
1ok (g D2 ) o (g D 1 ni2)
T”'n Trn-{»l Trn+1 Trn

or equivalently

and

hence

q q
Trn > Trn+1'

However this contradicts to the assumption that the sequence {7,}°2 is non-
increasing.

Theorem 6. Let 1 < g < ocoand 0 < p < q. Ife =t,, for somen €
N then € (A, W], I.p) = E(AW] 1., @) = 7, If 0 < & < limyoo by,
then & (A, WqT,ISJ,) =¢£ (A,W;f,[a,p,A) = a,g, where v € N is such that
rn =1 for every sufficiently large n. Finally, if € > t1 then & (A, Wg, Igyp) =
E(AW], Ly, ®F) =71
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Proof. In case ¢ = t,, or ¢ > t; the assertion of the theorem follows easily
from Theorem 3. Assume now that lim,_, t,, = ¢ > 0. Since lim,_,oc t, =0
and r, is non-decreasing we conclude that there exists » € N and N € N such
that r,, = r for every n > N. For x =Th € WqT, |hllg <1, and a € I, p(x),

|Az — A(a)||, <supay - |z —alg <supay -e.
keN keN
Let us show that suppcyar = a,. Assume to the contrary that there exists
k € N such that o > a,. Then there exists n > max {N, k,r} such that

af (1-28 ) >al(1-"H ) =4,,>a (1- 2.
Tk: Tr Tk

The above contradiction proves the above estimate (A, WtJT,I&p,A) < aye.
Clearly, the element h* = (0,...,0,=,0,...) with non-negative element

[N
appearing on the position r gives the desired lower estimate.

Now, let ¢ < p < co. Define the sequence {c¢,},- | using formulas (2.1). It is
not difficult to verify that {c,},- ; is non-increasing and tend to 0 as n — co.
Indeed, since lim,, oo 7, = 0 and ¢/p < 1,

1/p —1/q
N pq n pq
m 7y lim sup E a;’_qéjm E a;’_qéj,n =0.

lim ¢, < A}i
n—oo —00
n—oo \ o j=N+1

Theorem 7. Let 1 < ¢ < p < 0. If € € (0,c1] then there exists m € N
such that € € (¢m41,cm] and X = A(e) € [0,1) such that

1/p _pq_ —1/q
m  pg m ai?—q(;‘l/np()
e= | ar5n()) Z% . (2.3)
j=1 j=1 J

Then
& (Aaa WqTaIE,p) =¢£ (Aom W(;rv £,p> , )

m,A

pP—q q
P

. m . _pqg

— q P—q .

= | T t€ Zaj 3im(N)
i=1

where the method @:17/\ is defined in Theorem 3. Otherwise, if € > c1 then
E(Aa, W I,) =€ (Aa, W I, ) =71

2.4. Applications

Let H be a complex Hilbert space with orthonormal basis {¢n }, 1, {tx}72,
be a non-increasing sequence; 1" : fo — {9 be an operator mapping sequence
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r = (x1,x2,...) into sequence Tax = (t1x1,toxe,...), and A, : lo — fo be
an operator mapping sequence x = (x1,x2,...) into the sequence A,z =
(11, agxa, . ..). Consider the class

o [o.¢]
wT .= {x = Ztncngon : Z \cn]2 < 1} ,
n=1 n=1

the operator

0 oo
A,z = Zanxngon, T = angpn € H,
n=1

n=1

and information operator Z,. : H — {,, with 0 < p < oo, mapping an
element © = ) >, xppy into the set Z,.x = (x1,x2,...) + Ble, lp] € 4.
Due to isomorphism between £5 and H, under notations of Section 2 we have

E (AW I, ) = € (A0, WY, 1) . (2.4)

Moreover, methods of recovery F;L \ = Q[O(I):n, y are optimal, where U : {5 — H
is the natural isomorphism between ¢y and H: A (z1,22,...) = Y oo TnPn.
Remark that F;, \ are triangular methods of recovery that play an important
role in the theory of ill-posed problems (see, e.g. [5, Theorem 2.1] and references
therein).

Consider an important case when to,,, 1 = to;, = m™* and ag;,—1 = a9y =
m?Y, m € N, with some fixed > 0 and ~ € [0, ). It corresponds e.g., to the
space H = Lo(T) of square integrable functions defined on a period 7 with zero
mean, the class WT' = W} (T) of functions having Lo-bounded Weyl derivative
of order y and the Weyl fractional differentiation operator A, = Cg% of order
7. Due to equality (2.4), Theorems 5, 6 and 7 allow finding the exact value
of (- W4 (T),Z.,) for all or some values of e. Let us also establish sharp

dz7>
asymptotical behavior of this quantity as ¢ — 0T.

First, consider the case 2 < p < oo. It is not difficult to see that

n 2p

. —1— 22 p—3

lim n p—2 g al " 6in

n—00 J ’
J=1

2p

R (1)”@ i(1=)2 =
e 2 g
= Jz_: 2 (1 (n+ 1)(u—v>q)

_p2_ p 1 _Db
B /1 <t>7”p2 (1 - t(ﬂ—v)z) gy - b ((p‘Q)(“‘V) ozt 1) —: B
0 (=227
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and
n 2
. —(p—)2 2/P
J Z ,
j s+ (u=)2 2
I 1 — (5) ) jl=2 p=2
Tt 1 et (e e
1 v 24 ()2 2
_ / <t> " (1 - t(#—”?) 72 gt
0o \2
B (ot + +1,5% +1)
_ (P—2)(p—) (u—v)Q ’ p q
(b —7)2- Q'Ver(uf'v)
= B27
where B(c, 3) is the Euler beta-function. Hence,
lim n’”%*%cn = Bi/sz_l/z.
n—o0

Selecting n = n. € N and A € [0,1) such that equation (2.3) is satisfied, we
see that ¢,,_.+1 <€ < ¢y and from the above relation obtain that

1 1
. bt3—5 1 —-1/2
lim ne 1"£:Bl/pB2 2
e—0t

By Theorem 7,

e—+0 2
1
9 ) 2(7+%7%)+E v+i-1\ 2
1 1_1 1_1 1_1
_ 22Bf(u+§ p)B2 H+§—E —i—Bf(H-’_?_E) P BQ H+§—5

This provides sharp asymptotics behaviour for £ ( T Wi(T), Z. p) ase — 0T,
Similar arguments are applicable for p = oo, in which case 1/p should be

replaced with 0 (see Theorem 5) and for p € (0, q] (see Theorem 6)
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