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Convergence criteria of branched continued
fractions

Celebrating the 75th birthdays of Professors
V. F. Babenko and V. O. Kofanov

Abstract. The convergence criteria of branched continued fractions with
N branches of branching and branched continued fractions of the speci-
al form are analyzed. The classical theorems of convergence of continued
fractions that have become the subject of multidimensional generalizations
are formulated. The convergence conditions of branched continued fracti-
ons of the general form with positive elements are reviewed. The problem
the solution of which caused changes in the structure of such branched
continued fractions is formulated. A multidimensional generalization of
the convergence criterion of branched continued fractions of the speci-
al form is stated. A multidimensional generalization of Worpitzky’s and
van Vleck’s convergence theorems, the Śleszyński-Pringsheim theorem for
the considered types of branched continued fractions are considered. The
obtained multidimensional analogs of the theorems are analyzed, and other
conditions of convergence, in particular, of branched continued fractions
with real elements, multidimensional Leighton’s and Wall’s theorems, and
others are given.
Key words: continued fraction, branched continued fraction, branched
continued fraction of the special form, convergence.

Анотацiя. Проведено аналiз критерiїв збiжностi гiллястих ланцюго-
вих дробiв з N гiлками розгалуження i гiллястих ланцюгових дробiв
спецiального вигляду. Сформульовано класичнi ознаки збiжностi не-
перервних дробiв, якi стали предметом багатовимiрних узагальнень.
Проведено аналiз ознак збiжностi гiллястих ланцюгових дробiв за-
гального вигляду з додатними елементами. Сформульовано пробле-
му, для вирiшення якої потрiбно було змiнити саму структуру таких
гiллястих ланцюгових дробiв. Сформульовано багатовимiрне узагаль-
нення критерiю збiжностi гiллястих ланцюгових дробiв спецiально-
го вигляду. Розглянуто багатовимiрне узагальнення ознаки збiжностi
Воропiцького, Ван Флека, Слешинського-Принцгейма для розгляду-
ваних типiв гiллястих ланцюгових дробiв. Проаналiзовано отриманi
багатовимiрнi аналоги теорем, наведено iншi ознаки збiжностi зокре-
ма гiллястих ланцюгових дробiв з дiйсними елементами, багатовимiрнi
ознаки Лейтона-Уола та iншi.
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Continued fraction is an effective tool for constructing fractional rational
approximations of analytic functions. Different types of functional continued
fractions are considered C-, S-, g-, J-, T - fractions, etc. Their approximants
coincide with diagonal over- or under-diagonal approximants of the Padé table
[9, 34, 43, 48, 53, 59]. In contrast to polynomial and trigonometric approxi-
mations [40, 44, 57], rational approximations (especially with non-fixed zeros
of the denominator) are not yet well studied [42].

Often, convergence criteria of continued fractions are formulated as
convergence sets. These convergence sets can be obtained for functional fracti-
ons by imposing certain restrictions on the fraction coefficients and variables.
The study of the convergence of continued fractions with numerical elements
is the main task in the analytic theory of continued fractions. The classical
and most commonly used convergence theorems of continued fractions are
the Seidel-Stern criterion, the necessary Stern-Stolz conditions, the suffici-
ent theorems of convergence of Worpitzky’s, and van Vleck’s, the Śleszyński-
Pringsheim, parabolic theorems, and convergence conditions of periodic and
limit-periodic continued fractions (see [59]).

Branched continued fractions (BCFs) are multidimensional generalizati-
ons of continued fractions. Different types of functional BCFs are used to
construct fractional rational approximations of functions of many variables.
However, these approximations have nothing to do with multivariate Padé
approximations. In this paper, we propose to analyze the obtained multidi-
mensional generalizations of the classical convergence theorems of continued
fractions for BCFs with N branches of branching and BCFs with independent
variables. The latter one with fixed values of the variables are called BCFs of
the special form.

1. Some convergence criteria of continued fractions

A rigorous definition of continued fractions is stated in the monographs
[43, 59]. Let us have two sequences of complex numbers {an}∞n=1, {bn}

∞
n=0,

an 6= 0, n ≥ 1. A continued fraction is the sequence {fn}∞n=0, where

f0 = b0, fn = b0 +
a1

b1 +
a2

b2 +
a3

b3+. . . +
an
bn

, n ≥ 1. (1.1)
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Formally, a continued fraction can be written in the form

b0 +
a1

b1 +
a2

b2 +
a3

b3+. . . +
an

bn+. . .

. (1.2)

To write (1.2) or its approximant fn compactly, it can be used the notation

b0 +
∞

D
k=1

ak
bk
, fn = b0 +

n

D
k=1

ak
bk
, n ≥ 1.

There are different interpretations of the concept of convergence of conti-
nued fractions:

• classical convergence: the continued fraction (1.2) converges if there is a
finite limit lim

n→∞
fn = f, f ∈ C;

• convergence in a wide sense (by Perron) [53]: the continued fraction (1.2)
converges if there exists a limit lim

n→∞
fn (possibly equal to ∞).

It is also investigated the general convergence [48].
Let us formulate classical criteria for convergence of continued fractions.

Theorem 1 (L. Seidel, M. A. Stern). The continued fraction (1.2), where

ak = 1, bk > 0, k ≥ 1, converges if and only if the series
∞∑
k=1

bk diverges.

Theorem 2 (M. A. Stern, O. Stolz, H. von Koch). The continued fraction

(1.2), where ak = 1, bk ∈ C, k ≥ 1, diverges if the series
∞∑
k=1

|bk| converges.

There are finite limits for even and odd approximants.

Theorem 3 (J. Worpitzky). The continued fraction(
1 +

∞

D
k=1

ak
1

)−1

(1.3)

with complex partial numerators converges if |ak| ≤ 1/4, k ≥ 1, where the
constant 1/4 is the maximum possible. The values of the continued fraction and
its approximants are in the domain |z − 4/3| ≤ 2/3, which cannot be reduced.

Theorem 4 (W. Leighton, H. Wall). The continued fraction (1.3) with
complex partial denominators converges if |a2k−1| ≤ 1/4, |a2k| ≥ 25/4, k ≥ 1.

Circular sets of convergence similar to the one in Leighton-Wall theorem
have been studied by W. J. Thron, L. J. Lange, V. Cowling, J. Mc Laughlin,
Nancy J. Wyshinski [33, 46, 49, 58].
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Theorem 5 (E. B. Van Vleck). The continued fraction (1.2), where
ak = 1, bk ∈ G, k ≥ 1, G = {z ∈ C : z 6= 0, |arg z| < π/2− ε, } , ε > 0,

converges if the series
∞∑
k=1

|bk| diverges. The values of the continued fraction

and all its approximants lie in the domain G. There exists a limit of even and
odd approximants.

Theorem 6 (J. V. Śleszyński, A. Pringsheim). The continued fraction
(1.2), where ak, bk ∈ C, k ≥ 1 converges if |bk| > |ak|+1, k ≥ 1. The values of
the continued fraction and all its approximants lie in the domain |z − b0| ≤ 1.

Theorem 7 (Parabolic Theorem). The continued fraction (1.3), where
ak ∈ P, k ≥ 1, P = {z ∈ C : |z| − < (z) ≤ 1/2} , converges if there exists a

number k such that ak = 0, or all ak 6= 0, and the series
∞∑
k=1

|bk| diverges, where

b0 = 1, ak = (bkbk−1)−1 , k ≥ 1. The values of the continued fraction and all
its approximants are in the region |z − 1| ≤ 1, z 6= 0.

Various generalizations and modifications of these classical convergence
theorems of continued fractions have been established [34, 48].

2. Criteria for convergence of BCFs

The study of branched continued fractions with N branches of branching
N ∈ N, N ≥ 2 was initiated by V. Ya. Skorobohatko [56]. The foundati-
on of the analytical theory of BCFs was laid in the works of his students
P. I. Bodnarchuk, D. I. Bodnar, Kh. Yo. Kuchminska, M. O. Nedashkovsky,
M. S. Siavavko and their students [19, 31, 37, 45, 50, 54, 55].

Let i(k) = (i1, i2, . . . , ik), 1 ≤ ip ≤ N, p = 1, k, be the shorten notation of
multiindex. Similarly, j(r) = (j1, j2, . . . , jr). Consider the sequences of complex
numbers {ai(k)}, {bj(r)}, k ≥ 1, r ≥ 0, with bj(0) = b0.

A BCF with N branches of branching is a sequence {fn}, n ≥ 0, where

f0 = b0, fn = b0 +

N∑
i1=1

ai(1)

bi(1) +

N∑
i2=1

ai(2)

bi(2) +
. . . +

N∑
in=1

ai(n)

bi(n)

, n ≥ 1.

The infinite BCF can be formally written in the form

b0 +

∞

D
k=1

N∑
ik=1

ai(k)

bi(k)
. (2.1)

Let Ik =
{
i(k) : 1 ≤ ip ≤ N ; p = 1, k

}
, k ≥ 1, I =

∞⋃
k=1

Ik.
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In contrast to continued fractions, the conditions ai(k) 6= 0, i(k) ∈ I, are

not suffisient for avoiding the uncertainty
0

0
or
∞
∞
,∞−∞ while calculating

fn.
A key point in the theory of continued fractions is the existence of

recurrence relations for the canonical numerators and denominators of approxi-
mants [59]. If fn = Pn/Qn, then, for example,

Pn = bnPn−1 + anPn−2, n ≥ 1, P0 = b0, P−1 = 1.

There are no such relations for BCFs.
The BCF (2.1) converges if a finite limit of its approximants fn exists. The

BCF (2.1) converges absolutely if the series
∞∑
n=1

|fn+1 − fn| converges.

An important role in the study of the convergence of the BCF was played
by the formula for the difference between the approximants through the tails
of the approximants of the BCFs [29].

Let

Q
(n)
i(n) = bi(n), i(n) ∈ In, Q(n)

i(k) = bi(k) +
N∑

ik+1=1

ai(k+1)

Q
(n)
i(k+1)

, i(k) ∈ Ik, 0 ≤ k < n,

with Q(n)
i(0) = fn, be the tails of fn, n ≥ 1.

Assuming that m < n and all tails of fn and fm are nonzero, we have

fn − fm = (−1)m
N∑

i1,i2,...,im+1=1

m+1∏
k=1

ai(k)

m+1∏
k=1

Q
(n)
i(k)

m∏
k=1

Q
(m)
i(k)

.

Let us state the theorems of convergence of a BCF with positive elements.
Let αk = min{bi(k), i(k) ∈ Ik}, βk = max{bi(k), i(k) ∈ Ik}, k ≥ 1.

Theorem 8. The BCF (2.1), where ai(k) = 1, bi(k) > 0, i(k) ∈ I, diverges

if the series
∞∑
k=1

βk converges.

The sufficiency of divergence of the series
∞∑
k=1

αk for convergence of this

BCF remains unproved for over 50 years. It is proved that, for example, if

the series
∞∑
k=1

αkαk+1 is divergent, then the BCF (2.1) where all ai(k) = 1

converges. More general theorems are established in [21, 30].
It was the problem that led to the simplification of the structure of the

BCFs. BCFs with independent variables appeared [23]. When the values of the
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variables are fixed, such fractions are called BCFs of the special form. O. Baran
proposed the notation for such fractions [10]

b0 +
∞

D
k=1

ik−1∑
ik=1

ai(k)

bi(k)
, (2.2)

where b0, ai(k), bi(k) are complex numbers, i(k) ∈ Jk,

Jk = {i(k) = (i1, i2, . . . , ik) : 1 ≤ ik ≤ ik−1 ≤ ... ≤ i0} , k ≥ 1,

i0 = N is a fixed positive integer, also J =
⋃∞
k=1 Jk.

The theory of BCFs with independent variables has been rapidly developed
recently in the papers of R. I. Dmytryshyn, T. M. Antonova, D. I. Bodnar,
I. B. Bilanyk, and others [2, 4, 6, 11, 13, 16, 14, 18, 25, 26, 27, 28, 35, 36, 39].
One of the reasons for such situation is the efficiency of these BCFs for
approximation of functions of several variables, in particular, for the constructi-
on of expansion of the relations of Horn’s, Appell’s, Lauricella–Saran’s
hypergeometric functions [3, 7, 8, 38].

The first theorem of convergence of the BCF (2.2), where N = 2 and all
ai(k) = 1, bi(k) > 0, is established in [23], which is a necessary and sufficient
condition for the convergence of this fraction (analogous to the Seidel-Stern’s
theorem).

In [15], a multidimensional generalization of Seidel-Stern’s criterion for an
arbitrary N,N ≥ 2 was established.

Let us define the set of multiindices for each m, 2 ≤ m ≤ N,

J (m)
n = {i(n) = (i1, i2, . . . , in) : m ≤ in ≤ in−1 ≤ ... ≤ i0} , n ≥ 1, (2.3)

where i0 = N , and let us use the notation

m[s] = (m,m, ...,m)︸ ︷︷ ︸
s

; m− 1[s] = (m− 1,m− 1, ...,m− 1)︸ ︷︷ ︸
s

; s = 1, 2, . . . .

Let us recursively define continued fractions

b
(m−1)
i(r) = b

(m−2)
i(r) +

∞
D
s=1

1

b
(m−2)
i(r),m−1[s]

, i(r) ∈ J (m)
r , m = 2, N, r ≥ 1,

with initial conditions b(0)
i(k) = bi(k), i(k) ∈ Jk, k ≥ 1.

Theorem 9. The BCF (2.2), where all ai(k) = 1, bi(k) > 0, converges if

and only if for each m, 1 ≤ m ≤ N , the series
∞∑
p=1

b
(m−1)
m[p] diverge, and for each

m, 1 ≤ m ≤ N , and each multiindex i(n), i(n) ∈ J (m+1)
n , n ≥ 1, the series

∞∑
p=1

b
(m−1)
i(n),m[p] diverge.
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Since the elements of the series mentioned in this theorem are not easy to
calculate, the following effective sufficient criterion of convergence was establi-
shed [15].

Theorem 10. The BCF (2.2), where all ai(k) = 1, bi(k) > 0, converges

if for each m, 1 ≤ m ≤ N, the series
∞∑
p=1

bm[p], diverge and for each m, 1 ≤

m ≤ N − 1, and each multiindex i(n), i(n) ∈ J (m+1)
n the series

∞∑
p=1

bi(n),m[p]

diverge.

In addition to BCFs with positive elements, the conditions for the
convergence of BCFs with real elements are investigated [5, 22, 41]. Besides
the convergence, Gladun also studied the stability to perturbations of infinite
BCFs.

Theorem 11. [5] Let the BCF

∞

D
k=1

N∑
ik=1

(−1)k−1ai(k)

1
, (2.4)

where all ai(k) ≥ 0, satisfies the conditions

N∑
i2k=1

ai(2k) ≤ 1− ρi(2k−1),

N∑
i2k+1=1

ai(2k+1)/ρi(2k+1) ≤ ρi(2k) − 1,

where 0 < ρi(2k−1) ≤ 1, ρi(2k) ≥ 1, i(2k−1), i(2k) ∈ I, k ≥ 1, are real numbers

and
∞∏
k=1

ηk = 0, where η2k = 1 − max−1{ρi(2k)}, η2k−1 = max−1{ρi(2k−1)} −

1, k ≥ 1.
Then the BCF (2.4) converges and the following truncation error bounds

hold |f − fn| ≤ (1 + η1)

N∑
i1=1

ai(1)

n∏
k=1

ηk.

A multidimensional generalization of Worpitzky’s theorem firstly was
established for BCFs with N branches of branching [19].

Theorem 12. Let the BCF1 +

∞

D
k=1

N∑
ik=1

ai(k)

1

−1

, (2.5)

where ai(k) ∈ C, i(k) ∈ I, satisfy the conditions∣∣ai(k)

∣∣ ≤ t(1− t)/N, 0 ≤ t ≤ 1/2, i(k) ∈ I.
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Then
1) the BCF (2.5) converge;
2) the following truncation error bound holds

|f − fm| ≤
(1− 2t)tm

(1− t) [(1− t)m+1 − tm+1]
, if 0 ≤ t < 1/2, (2.6)

and
|f − fm| ≤ 2/(m+ 1), if t = 1/2, (2.7)

where f is the value of BCF (2.5);
3) the best value set is the circle

∣∣z − 1/(1− t2)
∣∣ ≤ t/(1− t2);

4) the boundary constant 1/(4N) (t = 1/2) is unimprovable.

For a BCF of the special form1 +

∞

D
k=1

ik−1∑
ik=1

ai(k)

1

−1

(2.8)

we can weaken the conditions by requiring that
∣∣ai(k)

∣∣ ≤ t(1− t)/ik−1, i(k) ∈
Jk, k ≥ 1, while preserving the inequalities (2.6) and (2.7). It is possible not to
change the conditions by requiring that

∣∣ai(k)

∣∣ ≤ t(1− t)/N, i(k) ∈ Jk, k ≥ 1.
Then the truncation error bounds are improved

|f − fn| ≤ LnKn, if 0 ≤ t < 1/2,

|f − fn| ≤ 2Ln/(n+ 1), if t = 1/2,

where Kn is the right-hand side of the inequality (2.6), Ln = CN−1
N+n−1N

−n [10].
The effect of considering BCFs of the special type instead of general BCFs is
obvious.

R. Dmytryshyn established another Worpitzky-type theorem of
convergence of BCF (2.8), different from the one stated above [36].

Theorem 13. Let the elements ai(k), i(k) ∈ Jk, k ≥ 1, of the BCF

N∑
i1=1

ai(1)

1
+

∞

D
k=2

ik−1∑
ik=1

ai(k)

1
(2.9)

satisfy the conditions∣∣ai(k)

∣∣ ≤ qiki(k)q
ik−1
i(k−1)

(
1− qi(k−1)

)
for all i(k) ∈ Jk, k ≥ 1, (2.10)

where
{
qi(k)

}
i(k)∈Jk, k∈N0

is a sequence of real constants such that 0 ≤ qi(k) < 1

for all i(k) ∈ Jk, k ≥ 0, or 0 < qi(k) ≤ 1 for all i(k) ∈ Jk, k ≥ 0. Then
1) the BCF with independent variables (2.9) converges absolutely, and its

value and the value of its approximants belong to the closed circle |z| ≤ 1− qN0 ;
2) if the inequality (2.10) holds qi(k) = 1/2 for all i(k) ∈ Jk, k ≥ 0, then the

closed circle |z| ≤ 1− 2−N is the «best» value set of the BCF with independent
variables (2.9).
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The absolute convergence of the BCF with independent variables (2.9) was
also proved in [2] under the conditions that

∣∣ai(k)

∣∣ ≤ ti(k)

1−
ik∑

ik+1=1

ti(k+1)

 for all i(k) ∈ J

where ti(k) for all i(k) ∈ J are nonnegative constants such that

ik∑
ik+1=1

ti(k+1) < 1, for all i(k) ∈ J .

There is a close result to Worpitzky’s theorem, it is Leighton-Wall
convergence theorem of continued fractions [47]. The idea of its proof is
to construct a continued fraction based on the approximants {fn} of (1.3),
but arranged in a different order f2, f1, f4, f3, . . . , fn, fn−1, . . . . Leighton-Wall
theorem is established by applying the Worpitzky’s theorem to the obtained
fraction. This approach cannot be generalized to BCFs. The same formulati-
on of the multidimensional Leighton-Wall theorem, namely «the BCF (2.5)
converges if for some positive constants ε,M the conditions are satisfied∣∣ai(2k−1)

∣∣ ≤ ε, ∣∣ai(2k)

∣∣ ≥M, k = 1, 2, . . . , i(p) ∈ I, p ≥ 1.» (2.11)

is incorrect. Y. Boltarovych showed that for any ε > 0 and M > 0 one can
construct a BCF that satisfies (2.11) and is divergent [32]. Therefore, the
theorem can not be generalized to BCFs if the conditions of (2.11) are satisfied.

О. Baran established an analog of the Leighton-Wall theorem for the BCF
of the special form

∞

D
k=1

ik−1∑
ik=1

ai(k)

1
(2.12)

with complex partial numerators [11]. Let l = l(i(k)) =

k∑
s=1

δisik , where δ
is
ik

is

the Kronecker symbol. Let us divide the set of indices J into subsets that do
not intersect in pairs J = E1 ∪ E2 ∪ E3, where

E1 = {i(k) : i(k) ∈ Jk, l = 1, k ≥ 1},

E2 = {i(k) : {i(k) ∈ Jk, l is even, k ≥ 2},

E3 = {i(k) : {i(k) ∈ Jk, l is odd, l > 1, k ≥ 3}.

Theorem 14. Let all elements of the BCF (2.12), ai(k) are complex
numbers and the following conditions hold

1) N > 1, ∣∣ci(k)

∣∣ ≤ r1/(ik−1 − 1), if i(k) ∈ E1,
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∣∣ ≤ r, if i(k) ∈ E3, (2.13)∣∣ci(k)

∣∣ ≥ (2 + r1) (1 + r1 + r) , if i(k) ∈ E2, (2.14)

2) N = 1, and for the elements ci(k) holds (2.13), if i(k) ∈ E1 ∪ E3, or
(2.14), if i(k) ∈ E2, where r1 = 0 for N = 1 and 0 < r1 < (1− 3r)/(1 + r) for
N > 1, 0 < r < 1/3. Then the BCF (2.12) converges and the truncation error
bound holds

|f − fn| ≤MCN−1
N+nq

n+1,

where M = 1 − r if N = 1 and M = max
1≤p≤N

(r1/r)
p if N > 1, q =√

(2 + r1) r/ (1− r1 − r).

In particular, a multidimensional generalization of the theorem on twin
convergence sets for continued fractions is considered in [13].

Theorem 15. The BCF

1 +

∞

D
k=1

ik−1∑
ik=1

c2
i(k)

1
, (2.15)

where ci(k) ∈ C, converges if
a) N > 1 and the elements of ci(k) satisfy the conditions∣∣ci(k) ± iΓ1,ik

∣∣ ≤ ξ1,ik , (ξ1,ik + |Γ1,ik |)
2 ≤ (ρ1 − ε1)/(ik−1 − 1), i(k) ∈ E1,∣∣ci(k) ± iΓ3,ik

∣∣ ≤ ξ3,ik , (ξ3,ik + |Γ3,ik |)
2 ≤ ρ− ε3, i(k) ∈ E3, (2.16)∣∣ci(k) ± iΓ2,ik

∣∣ ≥ ξ2,ik , (ξ2,ik − |Γ2,ik |)
2 ≥ (2 + ρ1) (1 + ρ1 + ρ+ ε2) , i(k) ∈ E2,

(2.17)
or

b) N = 1 and the elements of ci(k) satisfy (2.16) if i(k) ∈ E1∪E3, or (2.17)
if i(k) ∈ E2, where ρ1 = 0 for N = 1 and ρ1 > 0 for N > 1, ρ > 0, 0 < ε1 <
ρ1, 0 < ε3 < ρ, ε2 > 0,Γj,s ∈ C, ξj,s > 0, j = 1, 3, s = 1, N .

The results obtained by O. Baran are a certain strengthening and generali-
zation of the results established for continued fractions. If we set N = 1, i.e.,
when the BCF degenerates into a continued fraction, then the convergence set
can be wider for certain values of the parameters. In addition to the classical
results, we obtain additional truncation error bounds for continued fractions.

Let us consider a multidimensional generalization of the Śleszyński-
Pringsheim theorem [19].

Theorem 16. The BCF (2.1) with complex elements satisfying the condi-
tions ∣∣bi(k)

∣∣ ≥ ∣∣ai(k)

∣∣+N, i(k) ∈ I, (2.18)

converges absolutely and its best value set is the circle |z − b0| ≤ N.
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Theorem 17. The BCF (2.1) with complex elements satisfying the condi-
tions ∣∣bi(k)

∣∣ ≥ N ∣∣ai(k)

∣∣+ 1, i(k) ∈ I, (2.19)

converges absolutely and its best value set is the circle |z − b0| ≤ 1.

For the BCF of the special form (2.2) the conditions (2.18) and (2.19) can
be replaced with the following conditions [12]∣∣bi(k)

∣∣ ≥ ∣∣ai(k)

∣∣+ ik, i(k) ∈ J ,

and ∣∣bi(k)

∣∣ ≥ ik−1

∣∣ai(k)

∣∣+ 1, i(k) ∈ J .

The multidimensional generalization of Perron’s theorem is the next
theorem of convergence of the BCF.

Theorem 18. The BCF (2.1) with complex elements satisfying the condi-
tions ∣∣bi(k)

∣∣ ≥ N∑
ik+1=1

∣∣ai(k+1)

∣∣+ 1, i(k) ∈ J , (2.20)

converges absolutely. The value set is the circle {z : |z| ≤
N∑
i1=1

|ai1 |}.

This theorem was established by M. O. Nedashkovskyj [51] and extended
to matrix BCFs (2.1) when ai(k), bi(k) are square nondegenerate matrices for
i(k) ∈ I [52]. The conditions (2.20) should be replaced with

∥∥∥b−1
i(k)

∥∥∥ ≤
1 +

N∑
ik+1=1

∥∥ai(k)

∥∥−1

, i(k) ∈ I.

Let us consider the BCF

∞

D
k=1

ik−1∑
ik=1

1

bi(k)
. (2.21)

By analogy with Theorem 1, we could assume that if the series
∞∑
k=1

βk

converges, where βk = max{|bi(k)|, i(k) ∈ Jk}, k ≥ 1, then this fraction is
divergent. But it is not. Even if this condition is met, it is possible to choose
a BCF so that it is convergent [20].

Using the multidimensional generalization of Seidel’s criterion, the multi-
dimensional analog of Van Fleck’s theorem is established [17].
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Theorem 19. Let the partial denominators of the BCF of the special form
(2.21) lie in the domain

G (ε) = {z ∈ C : z 6= 0, |arg z| < π/2− ε} , (2.22)

where ε is an arbitrary positive integer, 0 < ε < π/2. Then
1) every nth approximant fn of the BCF (2.21) lie in the domain (2.22);
2) there are finite limits of even and odd approximants;
3) the BCF (2.21) converges if for each m, 1 ≤ m ≤ N, the series

∞∑
p=1

∣∣bm[p]

∣∣ diverge as well as for each m, 1 ≤ m ≤ N − 1, and each multiindex

i(n), i(n) ∈ J (m+1)
n , the series

∞∑
p=1

∣∣bi(n),m[p]

∣∣ diverge.
For the BCF (2.1), where all ai(k) = 1, b0 = 0, a similar statement is true

[19]. But condition 3) of the theorem should be replaced with the condition

of divergence of the series
∞∑
k=2

αkSk−1, where αk = {min |bi(k)|, i(k) ∈ Jk},

k ≥ 2 Sk = αk + N−1αk−2 + N−2αk−4 + · · · + N−[(k−1)/2]αk−2[(k−1)/2]. For
N = 1, the divergence of this series is equivalent to the divergence of the series
∞∑
k=2

αk.

For certain subsets of the angular domain (2.22), truncation error bounds
have been established, in particular, if the elements of the BCF of the special
form (2.21) satisfy the conditions∣∣arg bi(k)

∣∣ ≤ θ, θ < π/4, i(k) ∈ J ,

<(bi(n)) ≥ δ, <(b1[s]) ≥ δ/sβ, <(bi(n),1[s]) ≥ δ/sβ,

s ≥ 1, 0 < δ < 1, 0 ≤ β ≤ 1/2, i(n) ∈ J (2)
n ,

then

|fm − fNn| < M ln−1

(
1 +

α

1− β

(
(n+ 1)1−β − 1

))
, m ≥ Nn, n ∈ N,

where α and M are positive constants independent of n and m [14].
A separate area in the theory of convergence of continued fractions is the

so-called parabolic theorems. The first proofs of this type were obtained by
W. J. Thron, W. T. Scott, and H. S. Wall in 1942. For BCFs, the first ones
were Theorems 3.22 and 3.23 [19]. Let us formulate one of these theorems for
BCFs.
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Theorem 20. Let the elements of the BCF (2.5) ai(k), i(k) ∈ I, lie in the
domain

Pε (γ) =
{
z ∈ C : |z| −Re

(
ze−2γi

)
≤ (2N)−1 (1− ε) cos2γ

}
, (2.23)

where γ, ε are arbitrary small, real numbers (0 < ε < 1, −π/2 < γ < π/2), N
is the number of branches of branching of the BCF (2.5). Then

1) exist finite limits of the even and odd approximants of the BCF (2.5);
2) the BCF (2.5) is convergent if one of the following two conditions is

satisfied: there exists a number k such that all ai(k) = 0, i(k) ∈ Ik, k ≥ 1, or
the series

∑∞
k=1 δk is divergent, where δk = min

(
1/
∣∣ai(k)

∣∣ , i(k) ∈ Ik
)
, k ≥ 1.

This research is continued in the works of O. Baran, D. Bodnar,
T. Antonova, I. Bilanyk, R. Dmytryshyn [1, 13, 18, 24].

Theorem 21. [1] Let there exist positive constants ε, ϕ, ε < 1 and ϕ <
π/(2(1 + ε)) such that the elements of ai(k) for all i(k) ∈ Jk, k ≥ 1, of the
BCF (2.12), satisfy the conditions

ik−1∑
ik=1

∣∣ai(k)∣∣− Re
(
ai(k)e

−i(ϕi(k−1)+ϕi(k))
)

cosϕi(k) − pi(k)
≤ 2(1− ε)pi(k−1), i(k − 1) ∈ Jk−1, k ≥ 1,

where ϕi(k), pi(k) are some real numbers such that
∣∣ϕi(k−1)∣∣ ≤ ϕ for all i(k) ∈ Jk, k ≥

0, p0 ≥ 0, 0 ≤ pi(k) ≤ (1 − ε) cosϕi(k) for all i(k) ∈ Jk, k ≥ 1, and let {fn}n∈N be
the sequence of its approximants. Then

1) the approximants of the BCF (2.12) are finite and lie in the half-plane
Re
(
ωe−iϕ0

)
≥ 1− p0;

2) there exist finite limits on the sequences of even {f2n}n∈N and odd {f2n−1}n∈N
approximants of the BCF (2.12).

Let us consider a two-dimensional BCF of the special form (i0 = 2)

∞

D
k=1

ik−1∑
ik=1

ai(k)

bi(k)
, (2.24)

where ai(k), bi(k) ∈ C, i(k) ∈ J . An analog of the Thron and Jones theorem
for these fractions [18] is established.

Theorem 22. Let the elements of the two-dimensional BCF of the special
form (2.24) satisfy the conditions∣∣a1[n]

∣∣−<(a1[n]e
−i(ψn+ψn−1)

)
≤ 2pn−1

(
<
(
b1[n]e

−iψn
)
− pn

)
, n = 1, 2, . . . ;∣∣a2[k],1[n]

∣∣−< (a2[k],1[n]e
−i(ψk+ψk−1)

)
≤ 2sk,n−1

(
<
(
b2[k],1[n]e

−iψk
)
− sk,n

)
,

n = 1, 2, . . . , k = 1, 2, . . . ;

<
(
b2[n]e

−i(arg a2[n],1−ψn)
)
≥ qn, n = 1, 2, . . . ;
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and for some lk, lk ∈ Z,

arg a2[k],1 + arg a2[k+1],1 − arg a2[k+1] = ψk + ψk+1 + 2πlk, k = 1, 2, . . . ,

where ψk are real numbers, pn, sk,n, qn, n = 0, 1, . . . ; k = 1.2, . . . , are some
positive constants such that each of the sequences{

a1[n]

pnpn−1

}∞
n=1

,

{
a2[k],1[n]

sk,nsk,n−1

}∞
n=1

, k = 1, 2, . . . ,

{
a2[n]

qn, qn−1

}∞
n=1

is bounded. Then the BCF (2.24) converges.

The parabolic theorems have been used to study the convergence of functi-
onal continued fractions and functional BCFs.

We do not pretend to present all the results concerning general and speci-
al types of BCFs. The emphasis is on the analogs of the classical results of
continued fractions for the multidimensional cases.

References

1. Antonova T. M.: Multidimensional generalization of the theorem on parabolic
domains of convergence of continued fractions. Mat. Met. Fiz.-Mekh. Polya 1999;
42(4): pp. 7–12.

2. Antonova T. M., Bodnar D. I.: Convergence regions of branched continued fracti-
ons of the special form. Theory of functions and its applications: Proceedings of
the Institute of Mathematics. NAS of Ukraine 2000; 31: pp. 19–32.

3. Antonova T., Cesarano C., Dmytryshyn R., Sharyn S.: An approximati-
on to Appell’s hypergeometric function F2 by branched continued fracti-
on. Dolomites Research Notes on Approximation 2024; 17(1): pp. 22–31.
doi:10.14658/PUPJ-DRNA-2024-1-3

4. Antonova T. M., Dmytryshyn R. I.: Truncation error bounds for the branched
continued fraction

∑N
i1=1

ai(1)
1 +

∑i1
i2=1

ai(2)
1 +

∑i2
i3=1

ai(3)
1 + · · · . Ukr. Math. J. 2020;

72(7): pp. 1018–1029. doi:10.1007/s11253-020-01841-7
5. Antonova T., Hladun V.: Some sufficient conditions for convergence and stability

of branched continued fractions with alternating partial numerators. Mat. Metody
ta Fiz.-Mekh. Polya 2004; 47(4): pp. 27–35.

6. Antonova T., Dmytryshyn R.: Truncation error bounds for branched continued
fraction whose partial denominators are equal to unity. Mat. Stud. 2020; 54(1):
pp. 3–14. doi:10.30970/ms.54.1.3-14

7. Antonova T., Dmytryshyn R., Goran V.: On the Analytic Continuation of Lauri-
cella–Saran Hypergeometric Function FK(a1, a2, b1, b2; a1, b2, c3; z). Mathematics
2023; 11(21): 4487. doi:10.3390/math11214487

8. Antonova T., Dmytryshyn R., Sharyn S.: Branched continued fraction
representations of ratios of Horn’s confluent function H6. CMA 2023; 6(1): pp.
22–37. doi:10.33205/cma.1243021

9. Baker G. A, Graves-Morris P.: Padé Approximants. Encyclopedia of Mathemati-
cs and its Applications. Cambridge University Press, 1996.

10. BaranO.E.: An analog of the Vorpits’kii convergence criterion for branched conti-
nued fractions of the special form. J. Math. Sci. 1998; 90(5): pp. 2348–2351.
doi:10.1007/BF02433964

66



CONVERGENCE CRITERIA OF BRANCHED CONTINUED FRACTIONS

11. Baran O. E.: Some circular regions of convergence for branched conti-
nued fractions of a special form. J. Math. Sci. 2015; 205(4): pp. 491–500.
doi:10.1007/s10958-015-2262-3

12. Baran O.: Some conditions of convergence of branched continued fractions with
independent variables. Journal of Lviv Polytechnic National University. Applied
Mathematics 1998; 341: pp. 18–23.

13. Baran O. E.: Some convergence regions of branched continued fracti-
ons of the special form. Carpathian Math. Publ. 2013; 5(1): pp. 4–13.
doi:10.15330/cmp.5.1.4-13

14. Bilanyk I.: A truncation error bound for some branched continued
fractions of the special form. Mat. Stud. 2019; 52(2): pp. 115–123.
doi:10.30970/ms.52.2.115-123

15. Bilanyk I., Bodnar D.: Convergence criterion for branched continued fractions of
the special form with positive elements. Carpathian Math. Publ. 2017; 9(1): pp.
10–18. doi:10.15330/cmp.9.1.13-21

16. Bilanyk I. B., Bodnar D. I.: Estimation of the Rates of Pointwise and Uniform
Convergence of Branched Continued Fractions with Inequivalent Variables. J.
Math. Sci. 2022; 265(3): pp. 423–437. doi:10.1007/s10958-022-06062-w

17. Bilanyk I. B., Bodnar D. I.: On the convergence of branched continued fracti-
ons of a special form in angular domains. J. Math. Sci. 2020; 246: pp. 188–200.
10.1007/s10958-020-04729-w

18. Bilanyk I. B., Bodnar D. I.: Two-Dimensional Generalization of the Thron–Jones
Theorem on the Parabolic Domains of Convergence of Continued Fractions. Ukr.
Math. J. 2023; 74(9): pp. 1317–1333. doi:10.1007/s11253-023-02138-1

19. Bodnar D. I.: Branched continued fractions. Naukova Dumka. 1986.
20. Bodnar D. I.: On Koch’s convergence criterion for branching continued fractions.

J. Math. Sci. 1993; 67: pp. 3265–3268. doi:10.1007/BF01097727
21. Bodnar D.: Sur la convergence des fractions continues branchées avec des termes

positives. Det Kong. Norske Vidensk. Selskab. Skrifter. 1994; 1: pp. 1–21.
22. Bodnar D. I.: Pringsheim type conditions of convergence for branched continued

fractions. Ukr. Mat. J. 1989; 41(11): pp. 1553–1557.
23. Bodnar D. I.: The investigation of one form of branched continued fractions.

Continued Fractions and its Application: Pr. Inst. Matem. AS USSR, 1976.
24. Bodnar D., Bilanyk I.: Parabolic convergence regions of branched continued

fractions of the special form. Carpathian Math. Publ. 2021; 13(3): pp. 619–630.
doi:10.15330/cmp.13.3.619-630

25. Bodnar D., Bodnar O., Bilanyk I.: A Truncation Error Bound for Branched Conti-
nued Fractions of the Special Form on Subsets of Angular Domains. Carpathian
Math. Publ. 2023; 15(2): pp. 437–448.doi:10.15330/cmp.15.2.437-448

26. Bodnar D. I., Bubniak M. M.: On convergence (2,1,...,1)-periodic branched conti-
nued fraction of the special form. Carpathian Math. Publ. 2015; 7(2): pp. 148–154.
doi:10.15330/cmp.7.2.148-154

27. Bodnar D. I., Bubniak M. M.: Multidimensional generalization of the oval
theorem for a periodic branched continued fraction of the special form. Proceedi-
ngs of the Institute of Mathematics. NAS of Ukraine 2014; 11(4): pp. 54–67.

28. Bodnar O., Dmytryshyn R.: On the convergence of multidimensional S-fractions
with independent variables. Carpathian Math. Publ. 2018; 10(1): pp: 58–64.
doi:10.15330/cmp.10.1.58-64

67



I. B. BILANYK, D. I. BODNAR, O. G. VOZNIAK

29. Bodnar D. I., Oleksiv I. Y.: On the convergence of branched continued
fractions with nonnegative terms. Ukr Math J. 1976; 28: pp. 290–293.
doi:10.1007/BF01089177

30. Bodnar D. I., Voznyak O. H., Mykhal’chuk R. I.: A Criterion of Convergence of
a Branched Continued Fraction with Positive Elements. J. Math. Sci. 2017; 222:
pp. 70–80. doi:10.1007/s10958-017-3283-x

31. Bodnarchuk P. I., Skorobohat’ko V. Ya.: Branched Continued Fractions and Their
Applications. Naukova Dumka, 1974.

32. Boltarovich E. A.: Analog of the Leighton-Wall convergence theorem for branched
continued fractions. Methods of investigation of differential and integral operators.
Nauk. Dumka 1989; pp. 32–36.

33. Cowling V., Leighton W., Thron W.: Twin convergence regions for continued
fractions. Bull. Amer. Math. Soc. 1944; 50: pp. 351–357.

34. Cuyt A., Brevik Petersen V., Verdonk B., Waadeland H., Jones W. B.: Handbook
of Continued Fractions for Special Functions. Dordrecht: Springer, 2008.

35. Dmytryshyn R. I.: Convergence of some branched continued fracti-
ons with independent variables. Mat. Stud. 2017; 47(2): pp. 150–159.
doi:10.15330/ms.47.2.150-159

36. Dmytryshyn R.: On the convergence criterion for branched continued fractions
with independent variables. Carpathian Math. Pub. 2018; 9(2): pp. 120–127.
doi:10.15330/cmp.9.2.120-127

37. Dmytryshyn R. I.: On the convergence of multidimensional g-fraction, their
properties, convergence theorem. NAIR. 2022.

38. Dmytryshyn R., Goran V.: On the Analytic Extension of Lauricella–Saran’s
Hypergeometric Function FK to Symmetric Domains. Symmetry 2024; 16(2):
220. doi:10.3390/sym16020220

39. Dmytryshyn R., Sharyn S.: Approximation of Functions of Several Variables
by Multidimensional A- and J-fractions with Independent Variables. 2023.
https://arxiv.org/abs/2303.13136 doi:10.48550/arXiv.2303.13136

40. Dziadyk V. К.: An introduction to the theory of uniform approximation of functi-
ons by polynomials. Nauka, 1977.

41. Hladun V. R.: Conditions of convergence and stability of branched continued
fractions with negative partial numerators. Mat. Metody ta Fiz.-Mekh. Polya
2003; 46(4): pp. 16–26.

42. Golub A. P.: Generalized moment representations and Pade approximants. Insti-
tute of Mathematics of NAS of Ukraine, 2002.

43. Jones W. B., Thron W. J.: Continued fractions: Analytic theory and applications.
Reading, Mass.: Addison-Wesley Pub. Co., 1980.

44. Korneichuk, N. P., Ligun, A. A., Babenko, V. F.: Extremal Properties of
Polnomials and Splines. Nova Science Pub Inc., 1996.

45. Kuchminska Kh.Yo.: Two-dimensional continued fractions. Pidstryhach Institute
for Applied Problems in Mechanics and Mathematics. NAS of Ukraine, 2010.

46. Lange L.. Thron W.: A two-parameter family of best twin convergence
regions for continued fractions. Math. Zeitschr. 1960; 73: pp. 295–311.
doi:10.1007/BF01215312

47. Leighton W., Wall H. S.: On the transformation and convergence of continued
fractions. American Journal of Mathematics 1936; 58(2): pp. 267–281.

48. Lorentzen L., Waadeland H.: Continued fractions. Vol. 1 : Convergence theory.
Atlantis Press/World Scientific, 2008.

68



CONVERGENCE CRITERIA OF BRANCHED CONTINUED FRACTIONS

49. Mc Laughlin J., Wyshinski Nancy J.: A convergence theorem for continued fracti-
ons of the formK∞n=1

an
1 . The Journal of Computational and Applied Mathematics

2005; 179(12): pp. 255–262. doi:10.48550/arXiv.1812.11205
50. Nedashkovskyy N. A.: Calculations with λ-matrices. Naukova dumka, 2007.
51. Nedashkovskyy M. O.: Convergence and computational stability of branched

continued fractions with elements satisfying the Pringsheim type conditions. In:
Questions of qualitative theory of differential equations and their applications
IMAN URSR 1978; pp. 43–44.

52. Nedashkovskyy N.: Convergence criteria of matrix branched continued fractions.
Mat. Metody ta Fiz.-Mekh. Polya 2003; 46(4): pp. 50–56.

53. PerronO.: Die Lehre von der Kettenbrühen. Teubner, 1957.
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