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Metric Semigroups and Groups of Multisets !

Abstract. We investigate the algebraic and topological properties of sets
of complex multisets associated with Banach spaces having symmetric
bases. We consider algebraic structures on the sets of multisets and
compare some natural metrics on the (semi)groups of multisets. Also, we
construct nonlinear analogs of the weighted backward shift operator on
metric spaces of multisets, establish conditions of topological transitivity,
and prove an analog of the Topological Transitivity Criterion for metric
semigroups.
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Amnoranis. Jlocnimkeno ajrebpaidni Ta TOMOJIONIYHI BJIACTHUBOCTI MHO-
JKUH KOMIIJIEKCHUX MYJIBTHMHOXKIH, aCOIIOBAHMX i3 6AHAXOBUMH IIPOCTO-
pamu i3 cuMeTpuIHEME Oasucamu. Po3rsanyTo airebpalvHi crpykTypu Ha
MHOXKHHAX MYJIbTAUMHOXKHUH 1 3pOOJIEHO TOPIBHSHHS MEAKUX HTPUPOIHUX
MeTpHK Ha (HamiB)rpylax MyJIBTUMHOXKHUH. Takoxk 10Oym0oBaHO HeJiHiii-
Hi aHAJIOTU OMEPATOPa 3BAXKEHOTO JIIBOTO 3CyBY Ha METPHUYHUX IMIPOCTOPAX
MYJbTAMHOYKUH, BCTAHOBJIEHO YMOBH TOIIOJIOTIYHOI TPAH3UTUBHOCTI Ta JI0-
BEJIEHO AHAJIOI KPUTEPIIO TOIIOJIOIIYHOI TPAH3UTUBHOCTI [JIJIsi METPUIHUX
HAITBIPYII.

KurouoBi cioBa: cumerpuyani pyHKIT Ha OaHAXOBUX IIPOCTOPAX, METPHU-
9HI HAIBrpynu MYJBTUMHOXKWUH, TOIOJIOTIYHA TPAH3UTUBHICTD, TillepIy-
KJIYHICTH

MSC2020: Pr1 46B70, SEc 47A16, 22A05

1. Introduction and Preliminaries

Let S be a semigroup of isometric operators on a Banach space X. Then
the quotient space X/S, consisting of orbits with respect to actions of S on
X, can be considered as a natural domain of S-symmetric mappings. The set
X /S may have nontrivial algebraic and topological structures. The case when
X = {1 and S is the group of permutations of standard basis vectors was
considered in [6, 15] and in [9] for a more general situation. In particular, it
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was investigated semiring and ring structures related to X/.S, topologizations
of X/S, and applications to symmetric functions on Banach spaces. In this
paper, we continue the investigation of X/S and its supersymmetric versi-
on if X is a Banach space with a symmetric basis (e;) and S is the group
of permutations of vectors e;, i € N. Note that in this case, X/S may be
identified with a set of multisets of numbers because any element of X/S is
a family of unordered numbers with possible repetitions, that is, a multiset.
We compare different metrizable topologies on these sets and investigate the
dynamics of some analogs of the backward shift operator on corresponding
metric spaces of multisets. Possible applications of polynomial dynamics on
a ring of multisets in economics were proposed in [13]. Some applications of
the semiring of integer multisets in cryptography were considered in [10], and
applications in quantum physics in [8]. Many authors studied symmetric functi-
ons with respect to various groups and semigroups of operators S. In [1, 7, 14]
were considered algebras of symmetric polynomials and analytic functions on
Banach spaces £,, 1 < p < oo with respect to the group of permutations of
basis vectors, their algebraic bases and spectra, in [4, 16, 22| were investigated
so-called block symmetric polynomials on ¢, and L,. Algebras of symmetric
analytic functions with respect to abstract groups of operators were studied in
2, 3, 11].

Let X be a Banach space with a symmetric normalised monotone Schauder
basis (en), n € N and a symmetric norm || - || over the field C of complex
numbers. In other words, (e,) is equivalent to (e,(,)) for every permutation o
on the set positive integers N, ||e, || = 1 and the basis constant of (e,) is equal
to 1 (see [17] for details). In particular, for a given z € X,

o
r=(x1,...,Tpn,...) :anen,
n=1

llz|| > ||z|le, = maxy, |zy|. The support of x is defined as supp (z) = {k €
N: zj # 0}. We define an equivalence relation “~” so that x ~ z if and only if
there is a bijection o: supp (z) — supp (z) such that

Z Ln€n = Z Zn€s(n)-

nesupp () nesupp (z)

The class of equivalence containing = will be denoted by [z]. The quotient set
M¥E = X/ ~ consists of sets of (possibly infinite) multisets of nonzero numbers
[] = {xk: k € supp (x),z € X}, and the class [0] = {(0,0,...)}. Note that
(1., &pny...) ~ (0,21,...,Zp,...) and since the series Y 2 | x,e, converges
in X, every nonzero coordinate zj has a finite multiplicity in [z].

Let us define a semigroup associative operation on M by [z] + [z] = [z] U
[z]. Then (M7, +) is a commutative semigroup. Note that if [z]+[2] = [z]+[u],
then [z] = [u], that is, we have the cancelation law. If we denote by z e z the
vector (z1, 21,22, 22,..., ), then [x] 4+ [z] = [z ® z].
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It well-known that any commutative semigroup with the cancelation
law can be embedded (as a semigroup) to a commutative group using so-
called Grothendieck’s extension which is unique up to an isomorphism. The
Grothendieck extension of (M}, +) can constructed by the following way. Let

M x M =A{(ly]. [2]): [=], [y] € M}

be the Cartesian square of M} Consider the following relation of equivalence
on MY x M¥: ([yl, [2]) ~ ([v],[u]) if and only if [y]\[2] = [o]\[u] and []\[y] =
[u] \ [v]. In particular, we have that ([y] + [a], [z] + [a]) = ([y], [z]) for every
[a] € M. We will use notation [(y|z)] = [[y]|[z]] = [(---,v2, v1|z1, 22,...)]
for the class containing ([y], [z]), and M x for the quotient set M¥ x ML/ ~ .
The semigroup operation can be naturally extended to M x by

[ )] + [[o] | [ul] = [[] + [o] | [2] + [u]]-

Since [(z]x)] = [(0]0)] = 0 in M, for the inverse element we have —[(y|z)] =
[(z]y)]. Thus (Mx, +) is a commutative group. Using the “symmetric translati-
on” operation on X, x e z we can write

(W11 [2]] + [[o] | [ul] = [(yl2)] + [(v]w)] = [(y @ v]z e w)].

Throughout the paper we assume that M;r( is a subset of M x with respect to
the embedding [z] — [(0]|z)].

A representative (y'|z) of [(y|x)] is irreducible if for every pair of indexes i
and j, x; # y;. It is known [9, 15] that for every [(y|z)] € Mx there exists an
irreducible representative and it is unique up to permutations (separately for
coordinates of = and of y).

Let M be a metric space and T be a continuous mapping 7: M — M. We
say that the pair (T, M) is a (discrete) dynamical system on M considering the
sequence of maps {T"}, n € N [12, p. 4].

Definition 1. A dynamical system (7', M) is called topologically transitive
if for any pair U,V of nonempty open subsets of M there exists some integer
k > 0 such that T*(U) NV # ().

It is well known [21] that the weighted backward shift
By: (z1,. ., Ty ) = Mg, .oy Tp, 2L,

A € C, |\ > 1, is a topologically transitive linear operator if X = £,,,1 < p < o0
or if X = ¢g. In [18, 20, 24|, there were considered some generalizations of
the weighted backward shift for nonseparable Banach spaces. A continuous
mapping T: M — M is said to be hypercyclic if there is an element a € M
such that the orbit {T™(a): n € N} is dense in M. It is well-known that if
M is a complete separable space, then T is hypercyclic if and only if it is
topologically transitive [12, p. 10].
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In Section 2, we discuss different ways of introducing metrizable topologi-
es on /\/l;r( and Mx. In Section 3, we prove topological transitivity of some
nonlinear symmetric modifications of the weighted backward shift operator.

For general information about the theory of topologically transitive mappi-
ngs we refer the reader to [5, 12].

2. Metrics on Semigroups and Groups of Multisets

Let us define a norm ||[z]|| := ||z| on M7¥. Since the original norm on
X supposed to be symmetric, the defined norm on M} does not depend on
the representative. Clearly, (c.f. [15]) that ||[z] + [2]|| < [|/[=]|| + |/[z]]| and
lA2]|| = M| [=]]], for all [2],[2] € M} and X € C.

The function || [:E]H generates a metric d on M%:

d([2], [2]) = [|[#] AL2]

where [z]A[z] = ([z] \ [2]) U ([2] \ [2]) is the symmetric difference. Here we
understand the symmetric difference by taking into account the multiplicities
of elements. For example,

)

[(1,1,2,2,2,3)]A[(1,2,2,2,2,2,4)] = [(1,2,2,3,4)].
In |9, 15] it was introduced a norm on M x by the following formula:

[ {y! 1 [2] || = sup {1 + ()] [lw] 1] ~ [ly']][2]]}-

This norm generate a metric on My by d([[y]|[=]], [[v] ]| [«]]) = H (]| =] —
[[v] | [«]]||- This metric is an extension of the metric of MY introduced above,
because

d([a], [2]) = [[l] ALY = [[[10]] (1] = [10]] [21]]| = d([[o] [=]]. [[0]I[=1])-

Note that the metric space (M X, d) endowed with more algebraic operati-
ons, for the case X = ¢; was introduced in [15] and further investigated in
[8, 10]. The general case of X was considered in [9]. In particular, in [9] it was
proved that (/\/l X, d) is compete and so (M}, d) as a closed subspace.

Let us denote by (M X,05 d) the subset of (M X, d) consisting of elements
[(y|z)] = [[y] | [z]] such that there are representatives y’ € [y] and 2’ € [z] with
finite supports. Clearly, (./\/l X,09 d) is a subgroup of (M X d). Also, we denote
(/\/l}’o, d) = (/\/l;r(, d) N (M}O, d). Elements of M x admit the multiplication
by constants A € C,

Cx Mx > (A [(ylo)]) — Allyla)] = [(\y|ra)] € Mx.

The most important results that we may obtain using [9, 15] about (./\/l X, d),
can be gathered in the following theorem.

Theorem 1. (c.f. [9]).
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(i) (MX, d) is a complete metric space.
(i) The operation of addition is continuous in the metric d.

(11i) The multiplication by a constant is discontinuous but A[(y|x)] — 0 if
A — 0, for every fized [(y|x)].

(iv) The metric space (Mx,d) is nonseparable.
(v) (M}O,d) is a dense subspace in (Mx,d).

Proof. Items (i) and (ii) are proved in [9]. To prove (iii) and (iv) we observe
that for every € > 0 and [(y|z)] # 0, d(A[(y|z)], (XA + &)[(y|z)]) =2X+eX » 0
as € — 0 if X # 0. Thus, the operation of multiplication by constants is
discontinuous and the interval A[(y|z)], 0 < A\; < A < Ay is an uncountable
nowhere dense set. On the other hand, ||A[(y[=)]|| = [Al||[(y|z)]]| = 0 as A — 0.

To prove (v) we notice that for every representative x € [z] and y € [y],
and natural numbers n and m,

HI] = 1205l 2,0, ]

= H[( "aym-‘rkv"')ym-i-l’xn-i-l?' )xn—‘rkv)]H
) oo

<| 3 mal+] X oo
=m-+ k=n+

as min{n, m} — oco.

Note that the multiplication by a fixed constant A, [(y|z)] — A[(y|z)] is
obviously continuous with respect to [(y|x)].
Every function g on Mx (or on M%) can be extended to a function § on

X x X (on X) by g(ylz) = g([(y|z)]) (or §(z) = g([z]) respectively). We say
that a function f on X x X (resp. on X) is supersymmetric (resp. symmetric)
if there is a function g on Mx (resp. on M%) such that f(y|z) = g([(y|z)])

(resp. f(x) = g([2]))-

Proposition 1. Let [x(m)] be a sequence in M} that converges to an
element [z(9]. Then [z(™)] is of the form

2] = [(2{™, 2™, 2{™ 25, L)

V2 e
where [2(™)] = [(z%m), zgm), ...)] = [0] as m — oo.

Proof. Clearly, [z(™)] — [z(0)] =: [2(™)] — [0] as m — o0, and so [z("™)] is as
required.

Theorem 2. The quotient map x — [x] is open but it is discontinuous at
any point of X excepting 0.
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Proof. An open ball of radius r» in X centered at a point xy contains, in
particular, all point of the form xg + z such that supp (z) Nsupp (z) = @ and
||z|| < r. But for this case, [xo+ 2] = [zo]+[2] and the set {[zo]+[2]: ||[2]|| < r}
is exactly the open ball of radius r centered at [zg] € ./\/l;r( Thus, the range of
any open ball in X under the quotient map contains an open ball of M} and
so must be open.

Let z € X and z # 0. Let us choose a sequence () = (:cgn), xén), .. ) o)

that ‘a:,(gn) — xk‘ < 1/2"* and x,(cn) # x; for any pair of indexes k and j. Then

e}

1 1 1
Hx—az(”)H§2—nZ?:2—n—>0 as n — oo.
k=1

On the other hand

) = @ 2)]| = el + 1) > el > 0.

Thus, the quotient map is discontinuous at x.

According to the definition of d, a sequence (™ € X tends to 0 if and only
if [|[z(™)]]] = ||z tends to 0, that is, [z(™)] — [0] in M. Thus, z — [2] is
continuous at 0.

Corollary 1. If a symmetric function f on X is continuous, then f: [x] —
f(z) is continuous on M%.

A symmetric function f on X is continuous at zero if and only if f 18
continuous at [0].

Example 1. Let X = ¢; and x be the indicator function of the open unit
disc D C C, that is, x(t) = 1 if |[t| < 1 and x(¢) = 0 if |t| > 1. Set

g(x) = zpx(zn), = €L
n=1

Evidently, ¢ is symmetric and discontinuous. But g is continuous on M}
Indeed, let [#(™)] — [2] as m — oo. It is enough to check the case when
g(x(m)) 4 g(z). If for all coordinates .Tgm) of vectors z(™ we have ’x(m)’ <1
and there is a coordinate z; of z with |z;| > 1, then d([z(™)], [z]) > |z;| > 1. So,
for this case, [z(™)] /4 [z]. Clearly that for other cases, we have convergence.
For example, if absolute values of all coordinates of x are less than 1, then

~

g(x(m)) = 2™ — 2 = G(x) as m — co. Thus § is continuous while g is not.
The following example shows that the convergence of (™) in X does not
imply the convergence of [z(™)] in M%.

Ezxample 2. The set of complex numbers can be naturally included into
M b
x Py
C3 A~ [N =\ei] € M%.
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|At] 4+ [A2] if A # Ao,
A x2) = { 0 if A\ = Ao

In other words, the restriction of the metric d to the range of any closed subset
of C that does not contain zero, generates the discrete topology. In particular,
if A, converges to A # 0 in C and A, # A for all n, then A\,e; converges to Aey
in X, but [\,] does not converges to [A] in M%.

We can see that the topology generated by the metric d looks too strong. Let
us introduce another metric on M x generating a weaker topology. A mapping
f from a metric space (X, p1) to a metric space (Y, p2) is Lipschitz if the

Lipschitz constant
r,ze€X P1 (.’L‘, Z)

is finite. If L(f) < 1, then f is called nonexpansive. According to [23, pp. 10-13],
the following theorem holds

Theorem 3. Let (X, pg) be a complete metric space and "~ be a relation
of equivalence on X. Then the following function on (X/ ~) x (X/ ~),

p([x], [2]) = inf{po(z’, q1)+po(ar, g2)+- - ~+po(dn_1,2"): & ~ 2’z ~ 2, g5 ~ ¢j}

1s a pseudometric and

p([z], [2]) = sup|f (@) — f(2)l,

where f goes over the set of real valued nonexpansive functions on X such
that f(x) = f(y) if x ~ y. Moreover, if there is a sequence of nonerpansive
functions fr: X — R such that x ~ z if and only if fr(x) = fr(2), k € N, then
p 1S a metric.

Corollary 2. The function p(-, -), defined as
p([ul, [v]) = nf{[[e/ —qi][+ g1 —@2ll+- - -+ [lgp—1 =" : u = ', v =0, g5 = ¢},

is a pseudometric on Mx, and it is a metric if X = {,, 1 < p < oo, where
lull = ||lz|| + |y, v = (y|z) is the standard norm in X x X.

Proof. By Theorem 3 applying to po(u,v) = ||lu—v||, u,v € X x X and to the
equivalence “~”, the function p(-, -) is a pseudometric on Mx. Let X = £,
for some 1 < p < co. We claim that polynomials

o0 o0
Ti(u) = Ti(ylz) = 2 = > uy
j=1 j=1

are such that u ~ v if and only if Ty (u) = Tx(v), k € N, k > [p], where [p] is
the ceil of p. Indeed, in [1] it is proved that x ~ y in £,, 1 < p < oo if and only
if

00 [e)
> akb=>"yF, thatis, Ti(ylz) =0
j=1 J=1
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for all & > m > [p]. Hence, [(y|z)] = [0] if and only if x ~ y if and only
if Tp(ylx) = 0 for all k& > m > [p]. Let now u = (y|z), v = (d|b), and
T (u) = Ti(v) for all K > m > [p]. Then

(e 9] [e. 9]

oo o0
RO NIES WED N
j=1 j=1 j=1 j=1

a}rlld so Ti(y @ bl e d) = 0. Thus [[y] — [b} |[z] — [d]] = [(y|=)] — [(d]b)] = [0],
that is, u ~ v.
Note that for & > [p] and u = (y|z) with ||u|| < 1 we have

Ti(w)] /< (Zrm’wZ\yJ) < (JlP + 1g1?) 7 < ).

Let us define fi,(u) := |Ti(u)|'/*. Since the function u +— |ul| is nonexpansive
and | Ty, (u)|* < ||lul|, the sequence fy, is as required in Theorem 3. Thus p is
a metric.

For the general case of X the amount of symmetric polynomials may be not
enough. For example ¢y does not admit any nonconstant symmetric polynomial.
However, there are other nonexpansive symmetric functions on X. Consider
the following linear order “<” on the set of complex numbers C. Let a =
la|(cos b, +isinf,) and b = |b|(cos O + isin ) be complex numbers. Here we
assume that 0, and 0 are in the interval [0, 27). If |a| # |b| we say that a < b if
la| < [b]. If |a| = |b], then a < bif 6, < 6. Clearly, that “<” is a linear order and
any finite set of complex numbers has a maximal and a minimal element with
respect to this order. For a given subset K of complex numbers we denote
by Max(K) the maximal element in K (if exists) with respect to “<”. Let
[u] = [(y|r)] € Mx and suppose that (y|z) is the irreducible representation of
[u]. We define m{ ([u]) = Max,(z,,) and m; ([u]) = Max,(y,). If m} ([u]) and
m, ([u]) are defined, then

my ([u]) = my ([u] = [Olmy ([u]), m3 ([u]), .., m ([u])])
_MaX{ \{ml u 7m2+([u])aamk+([u])}7

and

my g ([u]) = my ([u] = [my ([ul), my ([u]), ..., my ([u])|0])
— Max{[y] \ {m7 ([u]), m5 ([u]),. .., m ([u])}.

In other words, the two-sides sequence
(eeevm ([), o my ([u]), my ([u]) [mf ([u]), mg ([u]), ..., myf ([u]))
is a reordering of the set

(---7yk,~~-,92,y1|$1,952a---75'3ka-~)
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such that m{ ([u]) = mJ ([u]) = --- and my ([u]) = m; ([u]) = ---. Thus,
[u] = [v] if and only if mF([u]) = mj([v]) for every k € N. Since X has
a symmetric basis and a symmetric norm, the reordering is in X x X and

preserves the norm. Also, it is easy to check that ||mg|| = 1. However, the

function u mf([u]) are not nonexpansive and even not continuous. Thus,

we can not apply Theorem 3 and we do not know if p is a metric in the general
case of Mx. Let M§ be the following subset of M x:

M% = {lu] = [(ylz)] € Mx:2; >0, y; <0, i,jeN}.

Clearly, /\/lf( is a semigroup but not a group. In [19] it was proved that the
restriction of functions u — m; [u] and u — m; [u] to the metric subspace

{(y,z) e X x X:2;>0, y; <0, 1i,j€eN}

is a Lipschitz function with a Lipschitz constant equals 1. Thus, we have the
following corollary.

Corollary 3. The restriction of the pseudometric p to M)i( s a metric.

Proof. It is enough to take fo, = m: and fop—1 = m;, and apply Theorem
3.

Proposition 2. Functions m; [u] and m; [u] are continuous on the metric

space (./\/l X, d) )

Proof. Let [u] = [(y|z)]. Then m[u] < [l]| < | [u]]| and my [u] < ||y < ||[u]|l
Hence, if ||[u]|| — 0, then both m; [u] and m; [u] tend to O for every k.

Proposition 3. The quotient map u + [u] is continuous as a mapping
from X x X to (Mx,p).

Proof. By definition of p, p([u], [v]) < [lu—v||. Thus, if u, — v in X x X as
n — oo, then [u,] — [v] in (Mx,p) as n — oo and so, the quotient map is
continuous.

Proposition 4. The operation of addition ([u], [v]) > [u] + [v] is conti-
nuous in (Myx, p).

Proof. Let [z], [w] in My and p € C be such that p([u],[2]) < &/2,
and p([v], [w]) < /2. Then, for some n,m € N there are qi,...,gn—1 and
$1,...,8m—1 in Mx such that

v = all + gt — q2ll + -+ + lgp1 — 2l < /2,
where u ~ v/, 2 = 2’ and ¢; ~ ¢, and
[0" = sl + (I8 = sall + -+ + [lsp1 — W'l <€/2,
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where v &~ v/, w ~ w’ and s; ~ s}. Thus,

p([u] + [, [2] + [w]) < ' + 0" — g1 — s1]| +[lgt + 81 — g2 — s2f| + -+~
Flgnr + sn—v =2 =l < o' — il + gy — g2l + -+
+lgn-1 = 2+ [l = sall + lls1 — sofl + -

+ s — v’ <e.

Hence, if [z] approaches [u] and [w] approaches [v], then [z] + [w] approaches
[u] + [v]. That is, the addition is continuous.

Lemma 1. For any [u] and [v] in Mx there are representatives u ~ u and
v~ v such that d([u], [v]) = ||u — 7.

Proof. Let v = (ylz) = (...,y2,91|x1,22,...) and v = (d]b) =
(...,da,d1|b1,ba,...). without loss of generality we may assume that
representatives (y|x) and (d|b) are irreducible. We set

U = ("'7y3707y2707y1|x1707x25051:35"’)

and v = (... ,(?2,671@1,32, ...), such that by = Za(k), and d; = CZ;(]‘), where p
and o are injections from N to itself, defined by the following way. If by = x
then o(1) =k, if by # xy, for any k € N, then (1) = 2; if dy = y; then u(1) = j,
if dy # xj for any j € N, then o(1) = 2, Suppose that o(n) and p(n) are defined.
If bpy1 = x for some k € N\ {o(1),---,0(n)}, then o(n +1) = 2k — 1,
otherwise, o(n + 1) = 2n; if dp41 = y; for some j € N\ {pu(1), -+, pu(n)},
then pu(n + 1) = 25 — 1, otherwise, u(n + 1) = 2n. By this way we have
constructed the injective (but not necessary surjective) maps o and u. Also,
we define Ek = 0 and gj = 0 for all £ and j that are not in the range of o
and p respectively. For example, let v = (...,0,—1,3,2|1,1,4,—5,0,...) and
v=1(..,0,23|1,6,0,...), then & = (...,0,—1,0,3,0,2/1,0,1,0,4,0,5,...)
and ¥ = (...,0,3,0,2/1,6,0,...).
We can see that for such representatives @ and v, d([u], [v]) = [|@ — ]|

Corollary 4. The topology generated by p on Mx is weaker than the
topology generated by d.

Proof. By the definition of p and Lemma 1,

p([ul, [v]) < ll@ =3l = d([u], [v])-

Hence, p is continuous in (/\/l X, d) and so the topology generated by p is weaker
than the topology generated by d.

It is easy to check that for the case if p is a metric, (MX,P) is a
separable metric space. We do not know if the quotient map is open in the
norm-to-p topology, but from Theorem 3 it follows that for every Lipschitz
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supersymmetric function f on X x X the function [(y|z)] — f(y,z) is conti-
nuous on (Mx, p). Also, we do not know if (Mx, p) is complete.

3. Topological Transitivity of a Nonlinear Backward Shift

Let us denote by Ef the subset of x € ¢ such that all coordinates x of
are real nonnegative numbers. Also, we denote by Rf the following subset in
M

Rf ={[z] e MLz e (]}
Clearly, (Rff , d) is a metric semigroup.

For every z = (21,...,%n,...) € ¢ we denote by M(z) =
[(max; z;,0,0,...)] = [(mi([z]),0,0,...)]. For a given A > 1 we define the
following map Ty : Rf — Rf,

Ta([z]) = A([=] — M(2)).

In other words, ¥ cancels the maximal coordinate of x and multiply the result
by A. It is easy to check that ¥ is continuous in (Rf , d). Note that T, is not
additive.

Ezxample 3.
T ([(1,2,2)] + [(1,2,3)]) = A[(1,1,2,2,2)]

# )‘[(17 L,2, 2)] = ‘IA([(L 2, 2)]) + ‘3)\([(17 2, 3)])

Theorem 4. Operator Ty is topologically transitive on (Rf ,d) for every
A> 1.

Proof. Let Ry be the subset of R consisting of all elements [z] such that
only a finite number of coordinates of x is not equal to zero. Note that Ry is
a dense subset in (Rf, d). Let us define a mapping S': Rf — Rf by

Note that
(n+ Dllyll

" —0 as n—> o

1S™ (DIl <

for every [y] € RY.

Let U and V be open subsets in (R, d), [] € UNRy and [y] € V. Suppose
that © = (21,...,2m,,0,0,...), z; >0, j = 1,...,m. Let us choose an integer
k such that

L S*([y]) +[=] € U:
2. my(S*([y])) <zj,5=1,...,m.
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Let B
= Z0
Since S*([y])+[x] € U, it follows that [2] € U as well. Let us compute Ty ([2]).
ktm ktm mi(ly)  ma(ly) w1 we
e = T (o1, S D )
*

k[ () mi([y]) y1 v2 B
Sotf(m ]
k
Thus, we found [z] € U such that ‘Z’;+m([z]) = [y] € V. So T, is topologically
transitive.

Note that the proof of Theorem 4 is still true if we replace the topology of
(Rf , d) by any metrizable semigroup topology such that ¥ is continuous, Rg
is dense in R and S™([y]) — 0 as n — occ.

Corollary 5. T, is topologically transitive (and so hypercyclic) on the
metric space (Ri{, p).

The following theorem can be considered as an analog of the Topological
Transitivity Criterion (c.f. [5, pp. 4,5]) for metric semigroups.

Theorem 5. Let Q be a metric semigroup, and T be a mapping from Q to
itself. Suppose that there is a dense subsets 0 C Q and = € Q, and for every
u € Q there is a number m € N and a sequence of maps Sy : 2 — Q, k € N
such that

(1) Sur(v) — 0 for everyv € = as k — o0o;
(ii) for each u € Q, T**™[S, 1(v) +u] = v for every u € Q as k — .
Then T s topologically transitive.

Proof. Let U and V be open and nonempty subsets of Q. Pick u € U N €,
v € VN E. Then, there is k' such that S, x(v) +u € U for k > k. According
to (i), there is k" such that T*+™[S, ;(v) +u] € V for k > k”. Thus, for
k > max(k’, k") we have that T**™ maps the point S, x(v) +u € U to V. So,
T is topologically transitive.

Let us extend the operator ¥ to /\/lf( by the following way: first of all, we

define
[ (0| max;(z;))] if max;(xz;) > —min;(y;);
M) = { [ i (o) = — i)

where (y|x) is an irreducible representation of [u]. Then
Ta[u]) = A([u] = M([u)).
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Theorem 6. T, is topologically transitive in (/\/lf(, d) and hypercyclic in
(M)i(,p) whenever |A| > 1.

Proof. Let
k

M([v]) + - + M([v]) +[v]

where m(u) = |supp (z)| + |supp (y)| is the sum of cardinalities of supp (z) and
supp (y). Also, the dense subset Q = E = Mgf is the subset of elements in ./\/l)i(
such that their irreducible representatives have finite support. Let us check we
can apply Theorem 5. Indeed, since [A| > 1, || Sy x([v])| < E[jv[|/A* — 0 as
k — 0. Let [u] = [(y|=)] and [v] = [(d|b)] be in M, and we suppose that
max;(b;) > —min;(d;). If k is big enough, m; (S[u]yk([v])) < ming ;{|z4l, ly;]},
i € supp (x), 7 € supp (y). Then

3§+m(s[u]7k([v})+[u]) :sl)f\-i_m[(yOd‘xoml([b]) my([b]) by b )}

)\m-&-k ’ ? )\m-‘rk ’ )\m-‘rk’ )\m-‘rk’
k
kg qm my ([0]) m([b) b b
=TV oIy Kyocl‘a:o Ntk T mek ,)\m+k,)\m+k,...ﬂ

k

:ng”.’%’% m1)f’£b])’“"m1)§}£b]),%’%"“)} .
k

where m = m(u). By Theorem 5, T, is topologically transitive in (Mi, d)
and it is hypercyclic in (./\/ljE ; p) because (./\/ljE , p) is separable.
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