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On locally finite groups whose cyclic
subgroups are monopronormal

The description of locally finite groups whose cyclic subgroups are monopronormal
was obtained.
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1. Introduction

The investigation of influence of some systems of subgroups on the group structure
is one of the oldest problem in group theory. For example, normal subgroups have a
very strong influence on the group structure. Nevertheless, there are another important
subgroups that have a significant effect on the group structure. We have in mind
some antipodes of normal subgroups and their generalizations (for example, abnormal
subgroups, self-normalizing subgroups, contranormal subgroups and others). Recall
that a subgroup H of a group G is said to be abnormal in G if for each element g ∈ G
we have g ∈ 〈H,Hg〉. Recall also that a subgroup H of a group G is contranormal in
G if HG = G. Note that every abnormal subgroup is contranormal (see, for example,
[1]).

On the other hand, there are subgroups that combine the concepts of normal
subgroups and abnormal subgroups. One of the examples of such subgroups are
pronormal subgroups. A subgroup H of a group G is said to be pronormal in G if
for each element g ∈ G the subgroups H and Hg are conjugate in 〈H,Hg〉. Note the
following property of pronormal subgroups. If H is pronormal in G, then NG(H) is an
abnormal subgroup of G (see, for example, [2]), and hence contranormal in G.

The first paper, devoted to the study of the influence of certain systems of subgroups
on the group structure, is a classical article of R. Dedekind [3], in which he described
the structure of finite groups whose all subgroups are normal. Later this result was
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extended to the case of infinite groups [4]. A group G is called a Dedekind group, if its
all subgroups are normal. By [4], if G is a Dedekind group, then G is either abelian or
G = Q×D×B, where Q is a quaternion group, D is an elementary abelian 2-subgroup
and B is a periodic abelian 2′-subgroup.

Let P and AP are subgroup properties. Moreover, suppose that all AP-subgroups
are antipodes (in some sense) to all P-subgroups. There are many papers devoted to the
study of the structure of groups whose subgroups either P-subgroups or AP-subgroups.
In the present paper we consider the local (in some sense) version of this situation.
Taking into account the above remarks on abnormal, contranormal and pronormal
subgroups, we naturally obtain the following concept.

Definition 1. Let G be a group and H be a subgroup of G. A subgroup H is called
monopronormal in G if for every element x ∈ G either Hx = H or NK(H)K = K,
where K = 〈H, x〉, x ∈ G.

In the paper [5], it has been obtained the description of locally finite groups whose
all subgroups are monopronormal. The next step here is to consider the locally finite
groups whose cyclic subgroups are monopronormal.

2. Preliminary results

Lemma 1. Let G be a group whose cyclic subgroups are monopronormal.

(i) If H is a subgroup of G, then every cyclic subgroup of H is monopronormal.

(ii) If H is a normal subgroup of G, then every cyclic subgroup of G/H is
monopronormal.

Proof. It follows from the definition of monopronormal subgroups.

Lemma 2. Let G be a group and H be an ascendant subgroup of G. If H is a
monopronormal subgroup of G, then H is normal in G.

Proof. Let H = H0 E H1 E . . . Hα E Hα+1 . . . Hγ = G be an ascending series between
H and G. We will prove that H is normal in each Hα for all α ≤ γ. We will use a
transfinite induction.

Let α = 1. Then we have H = H0 E H1 = G, which implies that H E G. Assume
now that H is normal in Hβ for all β < α. If α is a limit ordinal, then Hα =

⋃
β<α

Hβ.

Let x be an arbitrary element of Hα. Then x ∈ Hβ for some β < α. By induction
hypothesis, H is normal in Hβ. This means that Hx = H for each x ∈ Hα, which
implies that H E Hα.

Suppose now that α is not a limit ordinal. Let x be an arbitrary element of Hα.
If Hx = H, then H E Hα. Suppose that Hx 6= H. Put K = 〈H, x〉. By induction
hypothesis, H is a (proper) normal subgroup of Hα−1. Then Hx is a subgroup of Hα−1.
Moreover, Hx is normal in Hα−1, which implies that K = HHx〈x〉. Since H ≤ NK(H)
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and Hx ≤ NK(H), HHx ≤ NK(H). In other words, NK(H) = HHx〈y〉 for some
y ∈ 〈x〉. If we suppose that y = x, thenH is normal inK, and we obtain a contradiction
with the condition Hx 6= H. Thus, y 6= x, which implies, that NK(H) is normal in K.
This means, that NK(H)K 6= K.

Thus, we have equality Hx = H for every x ∈ Hα, which implies that H E Hα. For
α = γ we obtain that H is normal in Hγ = G.

Corollary 1. Let G be a group and H be a subnormal subgroup of G. If H is
monopronormal in G, then H is normal in G.

Corollary 2. Let G be a nilpotent group. If every cyclic subgroup of G is
monopronormal in G, then every subgroup of G is normal in G.

Proof. It follows from the fact that every subgroup of a nilpotent group is subnormal.

Corollary 3. Let G be a nilpotent group. If every cyclic subgroup of G is
monopronormal in G, then G is a Dedekind group.

Proof. It follows from Corollary 2 and the description of Dedekind groups.

Corollary 4. Let G be a locally nilpotent group. If every cyclic subgroup of G is
monopronormal in G, then G is a Dedekind group.

Proof. Let x, y are arbitrary elements of G. Put K = 〈x, y〉. Then K is a nilpotent
subgroup of G. Since 〈x〉 is monopronormal in K, by Corollary 2, 〈x〉 is normal in K.
Therefore, 〈x〉y = 〈x〉. This is valid for every element y ∈ G, which implies that 〈x〉 is
normal in G. Since every cyclic subgroup of G is normal in G, then every subgroup of
G is normal in G. Thus, G is a Dedekind group.

Lemma 3. Let G be a group and K be a finite subgroup of G. Suppose that every
cyclic subgroup of G is monopronormal in G. Let p be the least prime of Π(K). Then
K = R h P where P (respectively R) is a Sylow p-subgroup (respectively p′-subgroup)
of K.

Proof. Let P be a Sylow p-subgroup of K. By Corollary 3, P is a Dedekind group. Put
T = NK(P ). Then every cyclic subgroup of P is subnormal in T , and by Corollary 1,
it is normal in T . It follows that P has a T -chief series whose factors have order p. Let
U, V are T -invariant subgroups of P such that U ≤ V and V/U is a T -chief factor.
By the proven above, |V/U | = p. Then |T/CT (V/U)| divides p − 1, and the choice of
p implies that T = CT (V/U). In other words, every T -chief factor of P is central in
T . Hence, P has a T -central series. It follows that T = P × S where S is a Sylow
p′-subgroup of T . Suppose first that p = 2. Using now [6, Theorem 1] we obtain a
following semidirect decomposition K = R h P where R is a Sylow 2′-subgroup of K.
If p 6= 2 then the description of Dedekind groups shows, that P is abelian. Using now a
Burnside’s theorem (see, for example, [7, Theorem 10.21]), we obtain that K = Rh P
where R is a Sylow p′-subgroup of K.
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Corollary 5. Let G be a group, K be a finite subgroup of G. If every cyclic subgroup
of G is monopronormal in G, then K is soluble.

Proof. Let D be a Sylow 2-subgroup of K. By Lemma 3, we have K = RhD, where
R is a Sylow 2′-subgroup of K. The subgroup R is soluble [8], therefore K is also
soluble.

Lemma 4. Let G be a group, K be a finite subgroup of G. If every cyclic subgroup
of G is monopronormal in G, then K has a Sylow tower.

Proof. Let Π(K) = {p1, . . . , pk} and suppose that p1 < p2 < . . . < pk. We will prove
this assertion using induction in |Π(K)| = k. If k = 1, then K is a p1-subgroup, and
all is proved. Assume now that k > 1. By Lemma 3, K = R h P , where P is a
Sylow p1-subgroup of K and R is a normal Sylow p′1-subgroup of K. We have now
Π(R) = {p2, . . . , pk}, and therefore by the induction hypothesis R has a Sylow tower.
Since R is normal in K, every term of this Sylow tower is K-invariant, which proves
the assertion.

Corollary 6. Let G be a group, K be a finite subgroup of G. If every cyclic subgroup
of G is monopronormal in G, then K is supersoluble.

Proof. Let Π(K) = {p1, . . . , pk} and suppose that p1 < p2 < . . . < pk. By Lemma 4,
K has a series of normal subgroups K = S0 > S1 > . . . > Sk−1 > Sk = 〈1〉 such
that Sj−1 = Sj h Pj where Pj is a Sylow pj-subgroup of K and Sj is a normal Sylow
p′j-subgroup of K. We will prove this assertion using induction in |Π(K)| = k. If k = 1,
then K is a p1-subgroup and all is proved. Assume now that k > 1. The subgroup Sk−1

is the normal Sylow pk-subgroup of K. Then every its cyclic subgroup is subnormal
in K, and by Corollary 1, every cyclic subgroup of Sk−1 is normal in K. We have
now Π(K/Sk−1) = {p1, . . . , pk−1}, and therefore by the induction hypothesis K/Sk−1

is supersoluble, which proves the result.

Corollary 7. Let G be a group, K be a locally finite subgroup of G. If every cyclic
subgroup of G is monopronormal in G, then K is locally supersoluble.

Corollary 8. Let G be a locally finite group. If every cyclic subgroup of G is
monopronormal in G, then any Sylow 2′-subgroup of G is normal.

Proof. Let L be a local family of G consisting of finite subgroups. If L ∈ L, then by
Lemma 3, a Sylow 2′-subgroup of L is normal in L. Since it is valid for each L ∈ L,
then the Sylow 2′-subgroup of G is normal in G.

Let G be a group and RLN be a family of all normal subgroups H of G such
that G/H is locally nilpotent. Then the intersection

⋂
RLN = RLN is called the locally

nilpotent residual of G. It is not difficult to prove that if G is locally finite, then G/RLN

is locally nilpotent.
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Corollary 9. Let G be a locally finite group and L be a locally nilpotent residual of
G. If every cyclic subgroup of G is monopronormal in G, then 2 6∈ Π(L).

Proof. Let D be a Sylow 2′-subgroup of G. By Corollary 8, D is normal in G. The
factor-group G/D is a locally finite 2-group, in particular, it is locally nilpotent. It
follows that L ≤ D.

Lemma 5. Let G be a locally finite group. If every cyclic subgroup of G is
monopronormal in G, then the derived subgroup [G,G] is locally nilpotent.

Proof. Indeed, by Corollary 7, G is locally supersoluble. In particular, G is locally
soluble and therefore G has a chief series S whose factors are abelian (see, e.g., [9,
§58]). The fact that G is locally supersoluble implies that all factors of the chief series
S have prime orders [10, Lemma 7]. Let

H = {H ∈ S| there exists a subgroup H5 ∈ S

such that H/H5 is a G-chief factor}.

Since the factor H/H5 is cyclic, G/CG(H/H5) is abelian for every H ∈ H.
Let K =

⋂
H∈H

CG(H/H5). By Remak’s theorem we obtain an imbedding G/K ↪→

CrH∈HG/CG(H/H5), which shows that G/K is abelian. It follows that [G,G] ≤ K.
This inclusion shows that each factor H/H5 is central in [G,G] for each H ∈ H,
H ≤ [G,G]. Thus [G,G] has a central series. Being locally finite, [G,G] is locally
nilpotent.

Corollary 10. Let G be a locally finite group and L be a locally nilpotent residual
of G. If every cyclic subgroup of G is monopronormal in G, then L is locally nilpotent.

Corollary 11. Let G be a locally finite group and L be a locally nilpotent residual
of G. If every cyclic subgroup of G is monopronormal in G, then L is abelian and every
subgroup of L is G-invariant.

Proof. Indeed, by Corollary 9, L is a 2′-subgroup. Using Corollaries 3, 4 and 10 we
obtain that L is abelian. Finally, Corollary 1 proves that every subgroup of L is normal
in G.

Corollary 12. Let G be a locally finite group and L be a locally nilpotent residual
of G. If every cyclic subgroup of G is monopronormal in G, then G/CG(L) is abelian.

Proof. By Corollary 11, every subgroup of L is G-invariant. It follows that G/CG(L)
is abelian (see, for example [11, Theorem 1.5.1]).

Lemma 6. Let G be a locally finite group and L be the locally nilpotent residual
of G. If every cyclic subgroup of G is monopronormal in G, then G/L is a Dedekind
group.
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Proof. Let p ∈ Π(G/L) and let P/L be a Sylow p-subgroup of G/L. Choose two
arbitrary elements xL, yL ∈ P/L. Since G is locally finite, G/L is locally nilpotent, so
that 〈xL, yL〉 = K/L is a finite p-subgroup. Then there exists a finite subgroup F such
that K = FL. Choose a Sylow p-subgroup V of F . Then V (F ∩L)/(F ∩L) is a Sylow
p-subgroup of F/(F ∩ L). Since F/(F ∩ L) ∼= FL/L is a p-group, V (F ∩ L) = F , and
V L = K. By Corollary 3, V is a Dedekind group. It follows that V L/L = K/L is also
a Dedekind group. In turn, it follows that 〈xL〉yL = 〈xL〉. Since this is true for each
element yL ∈ P/L, 〈xL〉 is normal in P/L. Hence P/L is a Dedekind group.

Lemma 7. Let G be a locally finite group, p be an odd prime and P be a p-subgroup
of G. Suppose that NG(P ) contains a p′-element x such that [P, x] 6= 〈1〉. If every cyclic
subgroup of G is monopronormal in G, then every subgroup of P is 〈x〉-invariant,
P = [P, x], and CP (x) = 〈1〉.

Proof. By Corollaries 3 and 4, P is abelian. By [12, Proposition 2.12], P = [P, x] ×
CP (x). Suppose that CP (x) 6= 〈1〉, and choose in CP (x) an element c of order p. Let
now a be an element of [P, x] having order p. Lemma 2 shows that every subgroup of
P is 〈x〉-invariant. Since a 6∈ CP (x), ax = ad, where d is a p′-number. Moreover, d is
not congruent to 1(mod p). We have (ac)x = axcx = axc. On the other hand, since
ac 6∈ CP (x), (ac)x = (ac)t where t is also p′-number such that t is not congruent with
1(mod p). Hence adc = (ac)t = atct, and therefore d ≡ t(mod p) and t ≡ 1(mod p).
This contradiction proves that CP (x) = 〈1〉, and hence [P, x] = P .

Lemma 8. Let G be a locally finite group and L be a locally nilpotent residual of
G. If every cyclic subgroup of G is monopronormal in G, then Π(L) ∩ Π(G/L) = ∅.

Proof. Suppose the contrary. Let there exists a prime p such that p ∈ Π(L)∩Π(G/L).
The inclusion p ∈ Π(L) together with Corollary 9 shows that p 6= 2. Let P be a Sylow
p-subgroup of L and K = NG(P ). Suppose that K = G. The subgroup L is abelian by
Corollary 11, so that L = P × Q where Q is a Sylow p′-subgroup of L. By Lemma 6,
G/L is a Dedekind group, in particular, it is nilpotent. In the factor-group G/Q we
have L/Q = PQ/Q ≤ ζ(G/Q). It follows that G/Q is nilpotent, that contradicts the
choice of L. This contradiction shows that K 6= G. Since p 6= 2, Corollary 4 shows that
Sylow p-subgroups of G are abelian. Then from K 6= G we obtain, that K contains
some p′-element x. Without loss of generality we can suppose that x is an r-element
for some prime r. Since G/L is a Dedekind group and p ∈ Π(G/L), G/L contains
a p-element vL ∈ ζ(G/L). It follows that [v, x] ∈ L. Without loss of generality we
can suppose that v is a p-element. Put H = 〈x, v, P 〉 = P 〈x, v〉. Then the index
|H : P | is finite, so that the Sylow {p, r}′-subgroup R of H is finite. The isomorphism
H/(H∩L) ∼= HL/L = 〈x, v〉L/L = 〈xL, vL〉 implies that Π(H/(H∩L)) = {p, r}, which
implies that R ≤ H ∩ L. Corollary 11 shows that R is G-invariant, in particular, R is
normal in H. The finiteness of R implies that H/CH(R) is finite, therefore H = RhV ,
where V is a Sylow {p, r}-subgroup of H [13, Theorem 2.4.5]. Clearly, V ∩ L = P ,
and V/P = V/(V ∩ L) ∼= V L/L = 〈xL〉 × 〈vL〉 is an abelian subgroup of order rp.
Therefore, without loss of generality, we can suppose that P1 = 〈P, v〉 is a normal
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Sylow p-subgroup of V and V = P1 h 〈x〉. Moreover, [V, x] ≤ P . On the other hand,
the choice of x implies that [V, x] 6= 〈1〉. Then by Lemma 7, [V, x] = V , and we obtain
a contradiction. This contradiction proves that P is a Sylow p-subgroup of the entire
group G.

Corollary 13. Let G be a locally finite group and L be the locally nilpotent residual
of G. If every cyclic subgroup of G is monopronormal in G, then every subgroup of
CG(L) is G-invariant.

Proof. By Lemma 8 L is the Sylow π-subgroup of G, where π = Π(L). By [14,
Theorem 7] CG(L) = L× V , where V = Oπ′(CG(L)). By Corollary 11, every subgroup
of L is G-invariant. Therefore, it is enough to prove that every subgroup of V is G-
invariant. Let U be an arbitrary subgroup of V . Since V is G-invariant, [U,G] ≤ V .
On the other hand, by Lemma 6, G/L is a Dedekind group, so that [U,G] ≤ UL. Thus
we have [U,G] ≤ V ∩ UL = U(V ∩ L) = U .

3. Proof of main result

Theorem 1. Let G be a locally finite group and L be a locally nilpotent residual of
G. If every cyclic subgroup of G is monopronormal in G, then the following conditions
hold:

(i) L is abelian;

(ii) 2 6∈ Π(L) and Π(L) ∩ Π(G/L) = ∅;

(iii) G/L is a Dedekind group;

(iv) every subgroup of CG(L) is G-invariant.

Conversely, if a group G satisfies conditions (i)-(iv), every cyclic subgroup of G is
monopronormal in G.

Proof. Condition (i) follows from Corollary 11. Condition (ii) follows from Corollary 9
and Lemma 8. Condition (iii) follows from Lemma 6. Condition (iv) follows from
Corollary 13.

Conversely, suppose that a group G satisfies conditions (i)-(iv). Let H be an
arbitrary cyclic (and hence finite cyclic) subgroup of G. Put C = CG(L). By condition
(iv) the intersection H ∩C is G-invariant. In particular, if H ≤ C, then H is normal in
G. In particular, H is monopronormal in G. Suppose now that H 6= H ∩C. Clearly, it
is enough to prove now that H/(H ∩ C) is monopronormal in G/(H ∩ C). This shows
that without loss of generality we can suppose that H ∩C = 〈1〉. By condition (i) and
(iv), every subgroup of L is G-invariant. It follows that G/CG(L) = G/C is abelian
(see, for example [11, Theorem 1.5.1]). Then H ∼= H/(H ∩ C) ∼= HC/C is abelian.
From condition (ii) we obtain that Π(L) ∩ Π(H) = ∅.
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Let x be an arbitrary element of G. Put K = 〈H, x〉 and π = Π(H). Let x ∈ L.
Then K = 〈x〉H hH. This means that H is a Sylow π-subgroup of K. Moreover, H is
not normal in K, which implies that H is pronormal in K. This fact shows that NK(H)
is abnormal in K. Thus, NK(H)K = K.

Let x 6∈ L. Put L1 = K ∩ L and π = Π(H). By condition (iii) L1H is normal in
K. The equation Π(L) ∩ Π(H) = ∅ implies that H is a Sylow π-subgroup of L1H.
This means that H is pronormal in L1H. Since K = L1HNK(H) = L1NK(H), H is
pronormal in K, and we again obtain that NK(H)K = K. Hence in any case, H is
monopronormal in G.
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