The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines

E.V. Asadova (Oles Honchar Dnipro National University)
V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257

Abstract


For given $$$n, r \in \mathbb{N}$$$; $$$p, A > 0$$$ and any fixed interval $$$[a,b] \subset \mathbb{R}$$$ we solve the extremal problem $$$\int\limits_a^b |x(t)|^q dt \rightarrow \sup$$$, $$$q \geqslant p$$$, over sets of trigonometric polynomials $$$T$$$ of order $$$\leqslant n$$$ and $$$2\pi$$$-periodic splines $$$s$$$ of order $$$r$$$ and minimal defect with knots at the points $$$k\pi / n$$$, $$$k \in \mathbb{Z}$$$, such that $$$\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$$$, $$$\delta \in (0, \pi / n]$$$, where $$$\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$$$ and $$$\varphi_{n, r}$$$ is the $$$(2\pi / n)$$$-periodic spline of Euler of order $$$r$$$. In particular, we solve the same problem for the intermediate derivatives $$$x^{(k)}$$$, $$$k = 1, ..., r-1$$$, with $$$q \geqslant 1$$$.

Keywords


Bojanov-Naidenov problem; polynomial; spline; rearrangement; comparison theorem

MSC 2020


41A17; 41A44

Full Text:

PDF

References


Babenko V.F. "Investigations of dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications", Ukrainian Math. J., 2000, 52(1): pp. 8-28. doi:10.1007/BF02514133

Kwong M.K., Zettl A. "Norm inequalities for derivatives and differences", Lecture notes in mathematics, Berlin: Springer-Verlag, 1992; 1536: 150 p.

Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280.

Erdös P. "Open problems", Open Problems in Approximation Theory (B. Bojanov, ed.), SCT Publishing, Singapur, 1994; pp. 238-242.

Pinkus A., Shisha O. "Variations on the Chebyshev and $$$L^q$$$-Theories of Best Approximation", Journal of Approx. Theory, 1982; 35(2): pp. 148-168.

Kofanov V.A. "On some extremal problems of different metrics for differentiable functions on the axis", Ukrainian Math. J., 2009; 61(6): pp. 908-922. doi:10.1007/s11253-009-0254-5

Kofanov V.A. "Some extremal problems in various metrics and sharp inequalities of Nagy-Kolmogorov type", East. J. Approx., 2010; 16(4): p. 313-334.

Kofanov V.A. "Sharp upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z

Kofanov V.A. "Bojanov–Naidenov Problem for Differentiable Functions on the Real Line and the Inequalities of Various Metric", Ukrainian Math. J., 2019; 71(6): pp. 786-800. doi:10.1007/s11253-019-01687-8

Kofanov V.A. "Inequalities of different metrics for differentiable periodic functions", Ukrainian Math. J., 2015; 67(2): pp. 202-212. doi:10.1007/s11253-015-1076-2


Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.

Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.




DOI: https://doi.org/10.15421/241901

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 E.V. Asadova, V.A. Kofanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU