Inequalities of Carlson-Taikov-Shadrin type in $$$L_{2,r;\alpha,\beta}((-1,1))$$$ and $$$L_{2,e^{-t^2}}(\mathbb{R})$$$ spaces
Abstract
Recall that $$$L_{2,r;\alpha,\beta}((-1,1))$$$, $$$r\in \mathbb{N}$$$ and $$$\alpha,\beta> -1$$$, is the space of measurable functions $$$x:(-1,1)\to\mathbb{R}$$$ such that $$$\|x\|_{2,r;\alpha,\beta} := \int_{-1}^{1} |x(t)|^2(1-t)^{\alpha+r}(1+t)^{\beta+r}\,{\rm d}t < \infty$$$, and $$$L_{2,e^{-t^2}}(\mathbb{R})$$$ is the space of measurable functions $$$x:\mathbb{R}\to\mathbb{R}$$$ such that $$$\|x\|_{2,e^{-t^2}} := \int_{-\infty}^{+\infty} |x(t)|^2e^{-t^2}\,{\rm d}t < \infty$$$. S.Z. Rafalson [7], S.Z. Rafalson and I.V. Berdnikova [5] obtained analogues of Hardy-Littlewood-Polya inequalities for the norms of derivatives of functions in spaces $$$L_{2,r;\alpha,\beta}((-1,1))$$$ and $$$L_{2,e^{-t^2}}(\mathbb{R})$$$. Namely, they established sharp inequalities that estimate $$$\left\|x^{(k)}\right\|_{2,k;\alpha\beta}$$$, $$$k\in\mathbb{N}$$$ and $$$0 < k < r$$$, in terms of $$$\|x\|_{2,0;\alpha,\beta}$$$ and $$$\left\|x^{(r)}\right\|_{2,r;\alpha,\beta}$$$, and sharp inequalities that estimate $$$\left\|x^{(k)}\right\|_{2,e^{-t^2}}$$$ in terms of $$$\left\|x\right\|_{2,e^{-t^2}}$$$ and $$$\left\|x^{(r)}\right\|_{2,e^{-t^2}}$$$.
In this paper we obtain the analogues of Taikov-Shadrin inequalities for the norms of derivatives in spaces $$$L_{2,r;\alpha,\beta}((-1,1))$$$ and $$$L_{2,e^{-t^2}}(\mathbb{R})$$$. Namely, we obtain sharp inequalities that estimate $$$\left|x^{(k)}(t_0)\right|$$$, $$$t_0\in(-1,1)$$$, $$$k\in\mathbb{Z}_+$$$ and $$$k < r$$$, in terms of $$$\|x\|_{2,0;\alpha,\beta}$$$ and $$$\left\|x^{(r)}\right\|_{2,r;\alpha,\beta}$$$, and sharp inequalities that estimate $$$\left|x^{(k)}(t_0)\right|$$$, $$$t_0\in \mathbb{R}$$$, $$$k\in\mathbb{Z}_+$$$ and $$$k < r$$$, in terms of $$$\|x\|_{2,e^{-t^2}}$$$ and $$$\left\|x^{(r)}\right\|_{2,e^{-t^2}}$$$.
Keywords
MSC 2020
Full Text:
PDF (Українська)References
Arestov V.V., Gabushin V.N. "The best approximation of unbounded operators by the bounded ones", Izv. vuzov. Matematika, 1995; 11: pp. 42-63. (in Russian)
Arestov V.V. "Approximation of unbounded operators by the bounded ones and related extremum problems", Uspekhi mat. nauk, 1996; 51(6): pp. 88-124. (in Russian) doi:10.1070/RM1996v051n06ABEH003001
Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, Kyiv, 2003; 590 p. (in Russian)
Babenko V.F., Ligun A.A., Shumeiko A.A. "On non-improvable inequalities of Kolmogorov type for operators in Hilbert spaces", Res. Math., 2006; pp. 9-13 (in Russian)
Berdnikova I.V., Rafalson S.Z. "Some inequalities between norms of function and its derivatives in integral metrics", Izv. vyssh. ucheb. zaved., 1985; pp. 3-6. (in Russian)
Levin V.I. "Exact constants in inequalities of Carlson type", DAN USSR, 1948; pp. 635-638. (in Russian)
Rafalson S.Z. "One inequality between norms of function and its derivatives in integral metrics", Matem. zametki, 1983; pp. 77-82. (in Russian) doi:10.1007/BF01141198
Rafalson S.Z. "On the approximation of functions by Fourier-Jacobi sums", Izv. vuzov, Matem., 1968; pp. 54-62. (in Russian)
Szego G. Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. vol. XXIII, Amer. Math. Soc, New York, 1959; Russian transl.: GIFML, Moscow, 1962.
Taikov L.V. "Inequalities of Kolmogorov type and the best formulas of numeric differentiation", Matem. zametki, 1968; 4(2): pp. 223-238. (in Russian) doi:10.1007/BF01094964
Shadrin A.Yu. "Inequalities of Kolmogorov type and estimates of spline-interpolation for periodic classes $$$W^m_2$$$", Matem. zametki, 1990; 48(4): pp. 132-139. (in Russian) doi:10.1007/BF01139609
Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions", Approximation theory: A volume dedicated to Blagovest Sendov (B. Bojanov, ed.), Darba, Sofia, 2002; pp. 24-53.
Babenko V.F., Rassias T.M. "On Exact Inequalities of Hardy-Littlewood-Polya Type", J. of Mathematical Analysis and Applications, 2000; 245: pp. 570-593. doi:10.1006/jmaa.2000.6786
Bonan S.S., Clark D.S. "Estimates of the Hermite and the Freud polynomials", J. Approx. Theory, 1990; 63; pp. 210-224. doi:10.1016/0021-9045(90)90104-X
Carlson F. "Une inegalite", Ark. Mat. Astr. Fysik 25B, 1934; 1. (in French)
Erdelyi T., Magnus A.P., Nevai P. "Generalized Jacobi Weights, Christoffel Functions, and Jacobi Polynomials", SIAM J. Math. Anal., 1994; 25(2); pp. 602-614. doi:10.1137/S0036141092236863
Hardy G.H., Littlewood J.E., Polya G. Inequalities, Cambridge, 1934.
DOI: https://doi.org/10.15421/241914
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 V.F. Babenko, O.V. Kozynenko, D.S. Skorokhodov
This work is licensed under a Creative Commons Attribution 4.0 International License.