Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function

V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257
I.V. Popovich (Oles Honchar Dnipro National University)

Abstract


For any $$$p\in (0, \infty],$$$ $$$\omega > 0,$$$ $$$d \ge 2 \omega,$$$ we obtain the sharp inequality of Nagy type
$$
\|x_{\pm}\|_\infty \le
\frac{\|(\varphi+c)_{\pm}\|_\infty}{\|\varphi+c\|_{L_p(I_{2\omega}
)}} \left\|x \right\|_{L_{p} \left(I_d  \right)}
$$
on the set $$$S_{\varphi}(\omega)$$$ of $$$d$$$-periodic functions $$$x$$$ having zeros with given the sine-shaped $$$2\omega$$$-periodic
comparison function $$$\varphi$$$, where $$$c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$$$ is such that
$$
 \|x_{+}\|_\infty \cdot
\|x_{-}\|^{-1}_\infty = \|(\varphi+c)_{+}\|_\infty \cdot
\|(\varphi+c)_{-}\|^{-1}_\infty .
$$

In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $$$\|x_{+}\|_\infty / \|x_-\|_\infty$$$.

Keywords


Nagy type inequality; a class of functions with given comparison function; Sobolev class of functions; polynomial; spline

MSC 2020


41A17; 41A44; 42A05; 41A15

Full Text:

PDF

References


Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280.

Kofanov V.A. "Sharp upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z

Babenko V.F., Kofanov V.A., Pichugov S.A. "Inequalities of Kolmogorov Type and Some Their Applications in Approximation Theory", Rendiconti del Circolo Matematico di Palermo. Serie II, Suppl., 1998; 52: pp. 223-237.

Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions", Approximation theory: A volume dedicated to Blagovest Sendov (B. Bojanov, ed.), Darba, Sofia, 2002; pp. 24-53.


Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.

Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.

Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi mat. nauk, 1960; 15(3): pp. 81-120.




DOI: https://doi.org/10.15421/242001

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 V.A. Kofanov, I.V. Popovich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU