Estimates of the error of interval quadrature formulas on some classes of differentiable functions
Abstract
$$\int_0^{2\pi}f(t)dt -\frac{\pi}{nh}\sum_{k=0}^{n-1}\int_{-h}^hf(t+\frac {2k\pi}{n})dt = R_n(f;\vec{c_0};\vec{x_0};h)$$
obtained for the classes $$$W^rH^{\omega} (r=1,2,...)$$$ of differentiable periodic functions for which the modulus of continuity of the $$$r -$$$th derivative is majorized by the given modulus of continuity $$$\omega(t)$$$. This interval quadrature formula coincides with the rectangles formula for the Steklov functions $$$f_h(t)$$$ and is optimal for some important classes of functions.
Keywords
MSC 2020
Full Text:
PDFReferences
Pittnauer Fr., Reimer M. "Interpolation mit Intervallfunktionalen", Math. Z., 1976; 146(1): pp. 7-15. (in German) doi:10.1007/BF01213713
Omladic M., Pahor S., Suhadolc A. "On a new type of quadrature formulas", Numer. Math., 1976; 25(4): pp. 421-426. doi:10.1007/BF01396338
Kuzmina A.L. "Interval quadrature formulas with multiple node intervals", Izv. vuzov, 1980; 7: pp. 39-44. (in Russian)
Sharipov R.N. "The best interval quadrature formulas for Lipschitz classes", Constr. Funct. Theory and Funct. Analysis. Izd-vo Kazansk. un-ta, 1983; 4: pp. 124-132. (in Russian)
Babenko V.F. "On one problem of optimal integration", Researches on modern problems of summation and approximation of functions, and their applications, Dnipropetrovsk, DGU, 1984; pp. 3-13. (in Russian)
Motornyi V.P. "On the best interval quadrature formula in the class of functions with bounded $$$r^{th}$$$ derivative", East J. Approx., 1998; 4(4): pp. 459-478.
Borodachev S.V. "Optimization of 'interval' quadrature formulas for $$$H^{\omega_{+},\omega_{-}}$$$ classes", Res. Math., 1998; 3: pp. 19-26. (in Russian)
Borodachev S.V. "On optimization of 'interval' quadrature formulas on some non-symmetric classes of periodic functions", Res. Math., 1999; 4: pp. 19-24. (in Russian)
Korniichuk M.P. "On extremum properties of periodic functions", Dokl. AN USSR, 1962; 8: pp. 993-998. (in Ukrainian)
Korneichuk N.P. Extremum problems in approximation theory, Moscow, 1976; 320 p. (in Russian)
DOI: https://doi.org/10.15421/242002
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 V.P. Motornyi, D.A. Ovsyannikov
This work is licensed under a Creative Commons Attribution 4.0 International License.