The pointwise estimation of the one-sided approximation of the class $$$\breve{W}_\infty^r,\; 0 < r < 1$$$
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Motornyi V.P. "AApproximation of fractional-order integrals by algebraic polynomials. I", Ukrainian Math. J., 1999; 51(7): pp. 940-951. doi:10.1007/BF02591704
Motornyi V.P. "Approximation of Certain Classes of Singular Integrals by Algebraic Polynomials", Ukrainian Math. J., 2001; 53(3): pp. 377-394. doi:10.1023/A:1012388120569
Pasko A.M., Kolesnyk O.O. "Pointwise estimates of one-sided approximations of one class of singular integrals", Dnipr. Univ. Math. Bull., 2013; 18: pp. 141-144. (in Ukrainian)
Pasko A.M., Stefura V.D. "Pointwise estimates of the best one-sided approximations of classes $$$W^r_{\infty}$$$ for $$$0 < r < 1$$$", Dnipr. Univ. Math. Bull., 2018; 23: pp. 62-67. (in Ukrainian)
Temlyakov V.N. "Approximation of functions from the Lipschitz class by algebraic polynomials", Math. Notes, 1981; 29(4): pp. 306-309. doi:10.1007/BF01343540
Trigub R.M. "Direct theorems on approximation of smooth functions by algebraic polynomials on a segment", Math. Notes, 1993; 54(6): pp. 1261-1266. doi:10.1007/BF01209088
Doronin V.G., Ligun A.A. "On the best one-sided approximation on the interval", Izv. vuzov, Matemat., 1980; 5: pp. 16-21.
Nikolsky S.M. "On the best approximation of functions satisfying Lipschitz condition", Izv. AN sssr. Ser. Matemat., 1946; 10(4): pp. 295-332.
Pasko A.M. "The best one-sided approximation of classes of fractional integrals with regard to point location on the interval", Res. Math., 2010; 15: pp. 128-132.
Pasko A.M. "One-sided approximation of functions of the class $$$W^r_{\infty}$$$ by algebraic polynomials with regard to point location on the interval", Res. Math., 2006; 11: pp. 67-70.
Pasko A.M. "One-sided approximation of functions with regard to point location on the interval", Res. Math., 2009; 14: pp. 99-102.
DOI: https://doi.org/10.15421/242003
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 A.M. Pasko

This work is licensed under a Creative Commons Attribution 4.0 International License.











