Properties of the second-kind Chebyshev polynomials of complex variable
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Szego G. Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. vol. XXIII, Amer. Math. Soc, New York, 1959; Russian transl.: GIFML, Moscow, 1962.
Pashkovskij S. Computational applications of Chebyshev polynomials and series, Nauka, Moscow, 1983; 384 p. (in Russian)
Bateman H. Higher Transcendental Functions, McGraw-Hill, New York, 1953; vol. 1, 2. doi:10.1126/science.120.3112.302-b
Polya G., Szego G. Problems and Theorems in Analysis II, Springer-Verlag, Berlin, Heidelberg, 1998. doi:10.1007/978-3-642-61905-2
Zheverzheev V.F., Kal'nitskij L.A., Sapogov N.A. Special course in higher mathematics for VTUZes, Vyssh. shk., Moscow, 1970; 416 p. (in Russian)
Markushevich A.I. Theory of functions of a complex variable, rev. English ed. transl. and ed. by R.A. Silverman, Chelsea Pub. Co., New York, 1977.
Assante D., Davino D., Falco S., Schettino F., Verolino L. "Coupling impedance of a charge traveling in a drift tube", IEEE Trans. Magnetics, 2005; 41(5): pp. 1924-1927; doi:10.1109/TMAG.2005.846226
Assante D., Verolino L. "Efficient evaluation of the longitudinal coupling impedance of a plane strip", Progress in Electromagnetics Research M., 2012; 26: pp. 251-265. doi:10.2528/PIERM12091309
DOI: https://doi.org/10.15421/242009
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 O.V. Veselovska, V.V. Dostoina, M.I. Klapchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.