On the best interval quadrature formula for the class of functions $$$W^3 H^{\omega}$$$
Abstract
Keywords
Full Text:
PDF (Русский)References
Babenko V.F. "On one problem of optimal integration", Researches on modern problems of summation and approximation of functions, and their applications, Dnipropetrovsk, DGU, 1984; pp. 3-13. (in Russian)
Babenko V.F., Skorokhodov D.S. "On optimal interval quadrature formulae on classes of differentiable periodic functions", Res. Math., 2007; 8: pp. 16-25. (in Russian)
Borodachev S.V. "On optimization of 'interval' quadrature formulas on some non-symmetric classes of periodic functions", Res. Math., 1999; 4: pp. 19-24. (in Russian)
Borodachev S.V. "On optimal interval quadrature formulae for some classes of absolutely continuous functions", Res. Math., 2000; 5: pp. 28-34. (in Russian)
Derets Ye.V. "On the best interval quadrature formula for the class $$$W^2 H_1^{\omega}$$$", Res. Math., 2008; 16: pp. 73-83. (in Russian)
Korneichuk N.P. Extremum problems in approximation theory, Moscow, 1976; 320 p. (in Russian)
Kuzmina A.L. "Interval quadrature formulas with multiple node intervals", Izv. vuzov, 1980; 7: pp. 39-44. (in Russian)
Sharipov R.N. "The best interval quadrature formulas for Lipschitz classes", Constr. Funct. Theory and Funct. Analysis. Izd-vo Kazansk. un-ta, 1983; 4: pp. 124-132. (in Russian)
Borsuk K. "Drei Sätze über die n-dimensionale euklidische Sphäre", Fund. Math., 1933; 20(1): pp. 177-190. (in German)
Motornyi V.P. "On the best interval quadrature formula in the class of functions with bounded $$$r^{th}$$$ derivative", East J. Approx., 1998; 4(4): pp. 459-478.
Omladic M., Pahor S., Suhadolc A. "On a new type of quadrature formulas", Numer. Math., 1976; 25(4): pp. 421-426. doi:10.1007/BF01396338
Pittnauer Fr., Reimer M. "Interpolation mit Intervallfunktionalen", Math. Z., 1976; 146(1): pp. 7-15. (in German) doi:10.1007/BF01213713
DOI: https://doi.org/10.15421/241108
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Ye.V. Derets
This work is licensed under a Creative Commons Attribution 4.0 International License.