Estimates of approximation of elements of Hilbert space by subspaces spanned by given unit expansion
Abstract
Keywords
Full Text:
PDF (Русский)References
Jackson D. Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung: Diss., Gottingen, 1911. (in German)
Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space, Moscow, 1966; 544 p. (in Russian)
Babenko V.F., Zhiganova G.S., Novikova L.S. "On inequalities of Jackson type for the best $$$L_2$$$-approximations by wavelets", Res. Math., 2006; 11: pp. 3-8. (in Russian)
Horbachuk M.L., Hrushka Ya.I., Torba S.M. "Direct and Inverse Theorems in the Theory of Approximation by the Ritz Method", Ukrainian Math. J., 2005; 57(5): pp. 633-643. (in Ukrainian) doi:10.1007/s11253-005-0225-4
Ibragimov I.I., Nasibov F.G. "On the estimation of the best approximation of summable function on the real domain by entire functions of finite degree", Dokl. AN SSSR, 1970; 194(5): pp. 1013-1016. (in Russian)
Korneichuk N.P. "Exact constant in Jackson theorem of the best uniform appproximation of continuous periodic functions", Dokl. AN SSSR, 1962; 145: pp. 514-515. (in Russian)
Popov V.Yu. "On the best mean-square approximations by entire functions of exponential type", Izv. vuzov. Matem., 1972; 121(6): pp. 65-73. (in Russian)
Torba S.M. Operator approach to direct and inverse theorems of approximation theory: Autoref. diss. for cand.phys.-math.sc., 2007. (in Ukrainian)
Chernykh N.I. "On Jackson inequality in $$$L_2$$$ space", Trudy MIAN SSSR, 1967; 88: pp. 71-74. (in Russian)
Chernykh N.I. "On the best approximation of periodic functions by trigonometrical polynomials in $$$L_2$$$", Matem. zametki, 1967; 2(5): pp. 513-522. (in Russian) doi:10.1007/BF01093942
DOI: https://doi.org/10.15421/241006
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 V.F. Babenko, S.V. Savela
This work is licensed under a Creative Commons Attribution 4.0 International License.