Some problems of approximation theory for powers of normal operators in Hilbert space
Abstract
Keywords
Full Text:
PDF (Русский)References
Babenko V.F., Bilichenko R.O. "Approximation of unbounded operators by bounded operators in a Hilbert space", Ukrainian Math. J., 2009; 61(2): pp. 147-153. doi:10.1007/s11253-009-0212-2
Stechkin S.B. "The best approximations of linear operators", Math. Notes, 1967; 1(2): pp. 137-148. doi:10.1007/BF01268056
Subbotin Yu.N., Taikov L.V. "Best approximation of a differentiation operator in $$$L_2$$$ space", Math. Notes, 1968; 3(2): pp. 157-164. doi:10.1007/BF01094328
Arestov V.V. "Approximation of unbounded operators by the bounded ones and related extremum problems", Uspekhi matem. nauk, 1996; 51(6): pp. 88-124.
Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space, Nauka, 1966.
Babenko V.F., Bilichenko R.O. "The best approximation of classes, defined by powers of self-adjoint operators acting in Hilbert space, by other classes", Res. Math., 2009; 17: pp. 23-30.
Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.
Berezanskij Yu.M., Us G.F., Sheftel' Z.G. Functional analysis, Vyshcha Shkola, 1990.
Korneichuk N.P. "Inequalities for differentiable periodic functions and the best approximation of one class of functions by another", Izv. AN sssr. Ser. Matem., 1972; 36(2): pp. 423-434.
Korneichuk N.P. Extremum problems in approximation theory, 1976.
Korneichuk N.P. "Extreme values of functionals and the best approximation on classes of periodic functions", Izv. AN sssr. Ser. Matem., 1971; 35(1): pp. 93-124.
Stechkin S.B. "Inequalities between norms of derivatives of arbitrary function", Acta Sci. Math., 1965; 26: pp. 225-230.
DOI: https://doi.org/10.15421/241007
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 R.O. Bilichenko

This work is licensed under a Creative Commons Attribution 4.0 International License.











