The best one-side approximation of classes of integrals of fractional order with regard to position of point on interval
Abstract
We obtain the asymptotic estimations for the best one-sided point-wise approximation to the classes $$$W_{\infty}^r$$$, $$$r > 1$$$ (in case of fractional $$$r$$$) by algebraic polynomials.
Keywords
the best approximation; asymptotic estimation; algebraic polynomial; function class
Full Text:
PDF (Русский)References
Motornyi V.P. "Approximation of fractional integrals by algebraic polynomials II", Ukrainian Math. J., 1999; 51(7): pp. 940-951. (in Russian) doi:10.1007/BF02592041
Pasko A.M. "One-sided approximation of functions of the class $$$W^r_{\infty}$$$ by algebraic polynomials with regard to point location on the interval", Res. Math., 2006; 11: pp. 67-70. (in Russian)
Pasko A.M. "One-sided approximation of functions with regard to point location on the interval", Res. Math., 2005; 10: pp. 86-91. (in Russian)
Pasko A.M. "The best one-sided approximation of classes $$$WH^{\omega}$$$ with regard to point location on the interval", Res. Math., 2009; 14: pp. 99-102. (in Russian)
DOI: https://doi.org/10.15421/241015
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 A.M. Pasko
This work is licensed under a Creative Commons Attribution 4.0 International License.