On representation of functions that satisfy Lipschitz condition as convolution of functions from Lorentz spaces
Abstract
Keywords
Full Text:
PDF (Русский)References
Bennett C., Rudnick K. On Lorentz-Zygmund spaces, Panstw. wydawn. nauk., 1980.
Hahn L.-S. "On multipliers of p-integrable functions", Trans. Amer. Math. Soc., 1967; 128(2): pp. 321-335. doi:10.2307/1994326
Salem R. "Sur les transformations des series de Fourier", Fund. Math., 1945; 33(1): pp. 108-114. (in French)
Uno Y. "Lipschitz Functions and Convolution", Proc. Japan Acad., 1974; 50(10): pp. 785-788. doi:10.3792/pja/1195518747
Zygmund A. Trigonometric series. Vol 1, 1978.
Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, 1978.
Nikolskii S.M. Approximation of the functions of several variables and inclusion theorems, Nauka, 1977;
Peleshenko B.I. "Inequalities of various metrics for trigonometric polynomials in $$$F$$$-spaces", Prob. App. Math. Math. Model., 2003; pp. 168-177.
Timan M.F. "On embedding of $$$L_p^{(k)}$$$ classes of functions", Izv. VUZov. Ser. Matem., 1974; 10: pp. 61-74.
Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izv. AN ussr. Ser. matem., 1968; 32(3): pp. 649-686.
DOI: https://doi.org/10.15421/241016
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 B.I. Peleshenko

This work is licensed under a Creative Commons Attribution 4.0 International License.











