On representation of functions that satisfy Lipschitz condition as convolution of functions from Lorentz spaces
Abstract
Keywords
Full Text:
PDF (Русский)References
Zygmund A. Trigonometric series. Vol 1, 1978; (in Russian)
Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, Moscow, 1978; 400 p. (in Russian)
Nikolskii S.M. Approximation of the functions of several variables and inclusion theorems, Nauka, 1977; (in Russian)
Peleshenko B.I. "Inequalities of various metrics for trigonometric polynomials in $$$F$$$-spaces", Prob. App. Math. Math. Model., 2003; pp. 168-177. (in Russian)
Timan M.F. "On embedding of $$$L_p^{(k)}$$$ classes of functions", Izv. vuzov. Ser. Matem., 1974; 10: pp. 61-74. (in Russian)
Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izvestiya AN USSR. Ser. matem., 1968; 32(3): pp. 649-686. (in Russian) doi:10.1070/IM1968v002n03ABEH000650
Bennett C., Rudnick K. On Lorentz-Zygmund spaces, Warszava, Panstw. wydawn. nauk., 1980; 73 p.
Hahn L.-S. "On multipliers of p-integrable functions", Trans. Amer. Math. Soc., 1967; 128(2): pp. 321-335. doi:10.2307/1994326
Salem R. "Sur les transformations des series de Fourier", Fund. Math., 1945; 33(1): pp. 108-114. (in French)
Uno Y. "Lipschitz Functions and Convolution", Proc. Japan Acad., 1974; 50(10): pp. 785-788. doi:10.3792/pja/1195518747
DOI: https://doi.org/10.15421/241016
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 B.I. Peleshenko
This work is licensed under a Creative Commons Attribution 4.0 International License.