On representation of functions that satisfy Lipschitz condition as convolution of functions from Lorentz spaces

B.I. Peleshenko (Dnipropetrovsk State Agrarian and Economic University)

Abstract


Any $$$2\pi$$$-periodic function from the Lipschitz space $$$\Lambda_b^{\alpha}$$$ can be represented by way of the convolution of the functions from the Lorentz spaces $$$L_{p,r}$$$ and $$$L_{b,r'}$$$ in the case when $$$1 \leqslant b < \infty$$$, $$$0 < 1 - p^{-1} < \alpha < 1$$$ and the numbers $$$r$$$, $$$r'$$$ are picked in the corresponding way.

Keywords


convolution of the functions; Lipschitz space

References


Zygmund A. Trigonometric series. Vol 1, 1978; (in Russian)

Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, Moscow, 1978; 400 p. (in Russian)

Nikolskii S.M. Approximation of the functions of several variables and inclusion theorems, Nauka, 1977; (in Russian)

Peleshenko B.I. "Inequalities of various metrics for trigonometric polynomials in $$$F$$$-spaces", Prob. App. Math. Math. Model., 2003; pp. 168-177. (in Russian)

Timan M.F. "On embedding of $$$L_p^{(k)}$$$ classes of functions", Izv. vuzov. Ser. Matem., 1974; 10: pp. 61-74. (in Russian)

Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izvestiya AN USSR. Ser. matem., 1968; 32(3): pp. 649-686. (in Russian) doi:10.1070/IM1968v002n03ABEH000650

Bennett C., Rudnick K. On Lorentz-Zygmund spaces, Warszava, Panstw. wydawn. nauk., 1980; 73 p.

Hahn L.-S. "On multipliers of p-integrable functions", Trans. Amer. Math. Soc., 1967; 128(2): pp. 321-335. doi:10.2307/1994326

Salem R. "Sur les transformations des series de Fourier", Fund. Math., 1945; 33(1): pp. 108-114. (in French)

Uno Y. "Lipschitz Functions and Convolution", Proc. Japan Acad., 1974; 50(10): pp. 785-788. doi:10.3792/pja/1195518747




DOI: https://doi.org/10.15421/241016

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 B.I. Peleshenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU