On representation of functions that satisfy Lipschitz condition as convolution of functions from Lorentz spaces

B.I. Peleshenko (Dnipropetrovsk State Agrarian and Economic University)

Abstract


Any $$$2\pi$$$-periodic function from the Lipschitz space $$$\Lambda_b^{\alpha}$$$ can be represented by way of the convolution of the functions from the Lorentz spaces $$$L_{p,r}$$$ and $$$L_{b,r'}$$$ in the case when $$$1 \leqslant b < \infty$$$, $$$0 < 1 - p^{-1} < \alpha < 1$$$ and the numbers $$$r$$$, $$$r'$$$ are picked in the corresponding way.

Keywords


convolution of the functions; Lipschitz space

References


Bennett C., Rudnick K. On Lorentz-Zygmund spaces, Panstw. wydawn. nauk., 1980.

Hahn L.-S. "On multipliers of p-integrable functions", Trans. Amer. Math. Soc., 1967; 128(2): pp. 321-335. doi:10.2307/1994326

Salem R. "Sur les transformations des series de Fourier", Fund. Math., 1945; 33(1): pp. 108-114. (in French)

Uno Y. "Lipschitz Functions and Convolution", Proc. Japan Acad., 1974; 50(10): pp. 785-788. doi:10.3792/pja/1195518747


Zygmund A. Trigonometric series. Vol 1, 1978.

Krein S.G., Petunin Yu.I., Semyonov Ye.M. Interpolation of linear operators, Nauka, 1978.

Nikolskii S.M. Approximation of the functions of several variables and inclusion theorems, Nauka, 1977;

Peleshenko B.I. "Inequalities of various metrics for trigonometric polynomials in $$$F$$$-spaces", Prob. App. Math. Math. Model., 2003; pp. 168-177.

Timan M.F. "On embedding of $$$L_p^{(k)}$$$ classes of functions", Izv. VUZov. Ser. Matem., 1974; 10: pp. 61-74.

Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izv. AN ussr. Ser. matem., 1968; 32(3): pp. 649-686.




DOI: https://doi.org/10.15421/241016

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 B.I. Peleshenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU