On some types of antinormal subgroups
Abstract
A subgroup $$$H$$$ is called a pronormal subgroup in a group $$$G$$$ if for any $$$g \in G$$$ subgroups $$$H$$$ and $$$H^g$$$ are conjugated in $$${<}H, H^g{>}$$$. A subgroup $$$H$$$ is called a contranormal subgroup in a group $$$G$$$ if $$$H^G = G$$$. A subgroup $$$H$$$ is called a weak pronormal subgroup in a group $$$G$$$ if $$$N_K(H)$$$ is contranormal in any subgroup $$$K$$$ which contains $$$H$$$. We obtained the examples of non pronormal but weak pronormal subgroups.
Keywords
pronormal subgroup; weak pronormal subgroup; abnormal subgroup
Full Text:
PDF (Українська)References
Chupordia V.A. "On subgroups that are close to pronormal", Res. Math., 2009; 14: pp. 140-142. (in Ukrainian)
Carter R.W. "Nilpotent self-normalizing subgroups of soluble groups", Math. Zeitschr., 1961; 75: pp. 136-139. doi:10.1007/BF01211016
Hall P. "On the System Normalizers of a Soluble Group", Proc. London Math. Soc., 1938; 43(1): pp. 507-528. doi:10.1112/plms/s2-43.6.507
Rose J.S. "Finite soluble groups with pronormal system normalizers", Proc. London Math. Soc., 1967; 17(3): pp. 447-469. doi:10.1112/plms/s3-17.3.447
DOI: https://doi.org/10.15421/241017
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 A.A. Pypka, V.A. Chupordia
This work is licensed under a Creative Commons Attribution 4.0 International License.