Inequalities of Bernstein type for splines in $$$L_2(\mathbb{R})$$$ space

V.F. Babenko (Oles Honchar Dnipropetrovsk National University, Institute of Applied Mathematics and Mechanics of NAS of Ukraine), https://orcid.org/0000-0001-6677-1914
S.A. Spektor (Oles Honchar Dnipropetrovsk National University)

Abstract


We obtain sharp inequality of Bernstein type in $$$L_2(\mathbb{R})$$$ space for non-periodic spline functions of degree $$$m$$$, of minimal defect, with equidistant knots.

References


Subbotin Yu.N. "On the piecewise-polynomial interpolation", Math. Notes, 1967; 1(1): pp. 24-29. doi:10.1007/BF01221723

Babenko V.F., Pichugov S.A. "Bernstein type inequalities for polynomial splines in $$$L_2$$$ space", Ukrainian Math. J., 1991; 43(3): pp. 420-422. doi:10.1007/BF01670081


Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.

Korneichuk N.P. Splines in approximation theory, Nauka, 1984.

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi matem. nauk, 1960; 15(3): pp. 81-120.

Magaril-Il'yaev G.G. "On the best approximation of functional classes by splines on the real domain", Trudy matem. inst. rAN, 1992; 194: pp. 148-159.

Chui K. Introduction to wavelets, 2008.




DOI: https://doi.org/10.15421/240803

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2008 V.F. Babenko, S.A. Spektor

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU