Inequalities of Bernstein type for splines in $$$L_2(\mathbb{R})$$$ space

V.F. Babenko (Oles Honchar Dnipropetrovsk National University, Institute of Applied Mathematics and Mechanics of NAS of Ukraine), https://orcid.org/0000-0001-6677-1914
S.A. Spektor (Oles Honchar Dnipropetrovsk National University)

Abstract


We obtain sharp inequality of Bernstein type in $$$L_2(\mathbb{R})$$$ space for non-periodic spline functions of degree $$$m$$$, of minimal defect, with equidistant knots.

References


Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992; 304 p. (in Russian)

Korneichuk N.P. Splines in approximation theory, Nauka, Moscow, 1984; 544 p. (in Russian)

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi mat. nauk, 1960; 15(3): pp. 81-120. (in Russian) doi:10.1070/RM1960v015n03ABEH004093

Subbotin Yu.N. "On the piecewise-polynomial interpolation", Mat. zametki, 1967; 1(1): pp. 24-29. (in Russian) doi:10.1007/BF01221723

Babenko V.F., Pichugov S.A. "Bernstein type inequalities for polynomial splines in $$$L_2$$$ space", Ukrainian Math. J., 1991; 43(3): pp. 420-422. (in Russian) doi:10.1007/BF01670081

Magaril-Il'yaev G.G. "On the best approximation of functional classes by splines on the real domain", Trudy Matematicheskogo instituta RAN, 1992; 194: pp. 148-159. (in Russian)

Chui K. Introduction to wavelets, Moscow, 2008. (in Russian)




DOI: https://doi.org/10.15421/240803

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2008 V.F. Babenko, S.A. Spektor

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU