Sharp inequalities of various metrics on the classes of functions with given comparison function
Abstract
$$
\|x\|_{L_q(I_{d})} \le \frac{\|\varphi +
c\|_{L_q(I_{2\omega})}}{\|\varphi + c \|_{L_p(I_{2\omega})}}
\|x\|_{L_p(I_{d})}
$$
on the set $$$S_{\varphi}(\omega)$$$ of $$$d$$$-periodic functions $$$x$$$ having zeros with given the sine-shaped $$$2\omega$$$-periodic comparison function $$$\varphi$$$, where $$$c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$$$ is such that
$$
\|x_{\pm}\|_{L_p(I_{d})} = \|(\varphi +
c)_{\pm}\|_{L_p(I_{2\omega})}\,.
$$
In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $$$\|x_{+}\|_{L_p(I_{d})} / \|x_-\|_{L_p(I_{d})}$$$.
Keywords
MSC 2020
Full Text:
PDFReferences
Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions", Approximation theory: A volume dedicated to Blagovest Sendov (B. Bojanov, ed.), Darba, Sofia, 2002; pp. 24-53.
Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280. doi:10.1007/BF02791137
Kofanov V.A. "Exact upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z
References in russian
Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.
Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.
Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.
Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi mat. nauk, 1960; 15(3): pp. 81-120.
DOI: https://doi.org/10.15421/242102
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 T.V. Alexandrova, V.A. Kofanov

This work is licensed under a Creative Commons Attribution 4.0 International License.











