Sharp inequalities of various metrics on the classes of functions with given comparison function

T.V. Alexandrova (Oles Honchar Dnipro National University)
V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257

Abstract


For any $$$q > p > 0$$$, $$$\omega > 0,$$$ $$$d \ge 2 \omega,$$$  we obtain the following sharp inequality of various metrics
$$
\|x\|_{L_q(I_{d})} \le \frac{\|\varphi +
c\|_{L_q(I_{2\omega})}}{\|\varphi + c \|_{L_p(I_{2\omega})}}
\|x\|_{L_p(I_{d})}
$$
on the set $$$S_{\varphi}(\omega)$$$ of $$$d$$$-periodic functions $$$x$$$ having zeros with given the sine-shaped $$$2\omega$$$-periodic comparison function $$$\varphi$$$, where $$$c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$$$ is such that
$$
\|x_{\pm}\|_{L_p(I_{d})} = \|(\varphi +
c)_{\pm}\|_{L_p(I_{2\omega})}\,.
$$
In particular, we  obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $$$\|x_{+}\|_{L_p(I_{d})} / \|x_-\|_{L_p(I_{d})}$$$.

Keywords


inequality of various metrics; a class of functions with given comparison function; Sobolev class of functions; polynomial; spline

MSC 2020


41A17; 41A44; 42A05; 41A15

Full Text:

PDF

References


Babenko V.F., Kofanov V.A., Pichugov S.A. "Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions", Approximation theory: A volume dedicated to Blagovest Sendov (B. Bojanov, ed.), Darba, Sofia, 2002; pp. 24-53.

Bojanov B., Naidenov N. "An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös", J. d'Analyse Mathematique, 1999; 78: pp. 263-280. doi:10.1007/BF02791137

Kofanov V.A. "Exact upper bounds of norms of functions and their derivatives on the classes of functions with given comparison function", Ukrainian Math. J., 2011; 63(7): pp. 969-984. doi:10.1007/s11253-011-0567-z


References in russian
Korneichuk N.P., Babenko V.F., Ligun A.A. Extremum properties of polynomials and splines, Naukova dumka, 1992.

Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.

Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Tikhomirov V.M. "Set widths in functional spaces and theory of the best approximations", Uspekhi mat. nauk, 1960; 15(3): pp. 81-120.




DOI: https://doi.org/10.15421/242102

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 T.V. Alexandrova, V.A. Kofanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU