On widths of one class of periodic functions

V.G. Doronin (Dnipropetrovsk State University)
A.A. Ligun (Dnipropetrovsk State University)

Abstract


In the paper, we have found the A.N. Kolmogorov's width of the class $$$W^r L^+_p$$$ ($$$r=1,2,\ldots$$$, $$$1 \leqslant p \leqslant \infty$$$) of all $$$2\pi$$$-periodic functions $$$f(x)$$$ whose $$$(r-1)$$$-th derivative $$$f^{(r-1)}(x)$$$ is absolutely continuous and $$$\| f^{(r)}_+ \|_p \leqslant 1$$$.

References


Motornyi V.P., Ruban V.I. "Widths of some classes of differentiable periodic functions in $$$L$$$ space", Math. Notes, 1975; 17(4): pp. 531-543. doi:10.1007/BF01105381

Stein E.M. "Functions of exponential type", Ann. Math., 1957; 65(3): pp. 582-592. doi:10.2307/1970066


Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Uch. zap. MGU. Matem., 1939; 30(3): pp. 3-16.

Doronin V.G., Ligun A.A. "Exact values of upper bounds of the best approximations of $$$W^r_+ L_{\Phi}$$$ classes in $$$L$$$ metric", Res. Math., 1976; pp. 25-34.

Korneichuk N.P. Extremum problems in approximation theory, 1976.




DOI: https://doi.org/10.15421/247704

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 1977 V.G. Doronin, A.A. Ligun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU