On approximation of nonperiodic functions by algebraic polynomials in $$$L_p$$$ metric ($$$0 < p < 1$$$)
Abstract
In particular, for some classes we provide the constructive characteristic in the same metric.
Full Text:
PDF (Русский)References
Ivanov V.I. "Direct and inverse theorems of approximation theory in the metric of $$$L_p$$$ when $$$0 < p < 1$$$", Math. Notes, 1975; 18(5): pp. 641-658. doi:10.1007/BF01153563
Storozhenko E.A., Krotov V.G., Osval'd P. "Direct and inverse theorems of Jackson type in $$$L_p$$$ spaces, $$$0 < p < 1$$$", Matem. sbor., 1975; 98(3): pp. 395-415.
Krotov V.G., Osval'd P., Storozhenko E.A. "Direct and inverse theorems of Jackson type in $$$L_p$$$ spaces, $$$0 < p < 1$$$", Dokl. AN sssr, 1976; 226(1): pp. 44-47.
Potapov M.K. "On approximation of non-periodic functions by algebraic polynomials", Vestn. moskov. un-ta, 1960; 4: pp. 14-25.
Timan A.F. Approximation theory for real-variable functions, Fizmatgiz, 1960.
Motornyi V.P. "Approximation of functions by algebraic polynomials in $$$L_p$$$ metric", Izv. AN sssr. Ser. Matem., 1971; 35(4): pp. 874-899.
Motornyi V.P. Approximation of functions by algebraic polynomials in $$$L_p$$$ metric: Diss., 1967.
Ul'yanov P.L. "Inclusion of certain classes $$$H_p^{\omega}$$$ of functions", Izvestiya AN ussr. Ser. Matem., 1968; 32(3): pp. 649-686.
DOI: https://doi.org/10.15421/247710
Refbacks
- There are currently no refbacks.
Copyright (c) 1977 L.B. Khodak

This work is licensed under a Creative Commons Attribution 4.0 International License.











