Some conditions of convergence of interpolative Lagrange processes on $$$A_R$$$ and $$$\mathbb{C}^{\infty}$$$ classes
Abstract
$$R_0(X) = \inf \bigl\{ R > 1\colon \forall f \in A_R \lim\limits_{n \rightarrow \infty} \| f - L_n(X, f) \| = 0 \bigr\}$$
Theorem 1. Let the nodes of the matrix $$$X$$$ satisfy the condition $$$| \theta_{in} - \theta_{i-1,n}| \geqslant \frac{\varepsilon \pi}{n}$$$, $$$i = \overline{1, n}$$$, where $$$\theta_{in} = \arccos x_{in}$$$, $$$n = 1, 2, \ldots$$$, $$$0 < \varepsilon \leqslant 1$$$. Then the following inequality holds:
$$\bigl( \lim\limits_{n \rightarrow \infty} \sqrt[n]{\lambda_n(X)} \bigr)^{\varepsilon} \leqslant R_0(X) \leqslant \lim\limits_{n \rightarrow \infty} \sqrt[n]{\lambda_n(X)}$$
Analogous results take place for the classes $$$A_R$$$ of all regular and infinitely differentiable on $$$\mathbb{C}^{\infty}$$$ functions.
Full Text:
PDF (Русский)References
Lozinskii S.M. "$$$\tilde{C}_{\omega}$$$ and $$$\tilde{C}^*_{\omega}$$$ spaces and convergence of interpolative processes in them", Dokl. AN SSSR, 1948; 59(8). (in Russian)
Kish O., Sabadosh Yi. "Remarks on convergence of Lagrange interpolation", Acta Math. Hungar., 1965; 16: pp. 3-4. (in Russian)
Kish O. "Remarks on order of error of interpolation", Acta Math. Hungar., 1969; 20: pp. 3-4. (in Russian)
Smirnov V.I., Lebedev N.A. Constructive theory of complex variable functions, 1964. (in Russian)
Turetzkij A.Kh. Interpolation theory in problems, Vyshejshaya shkola, 1968; 318 p. (in Russian)
Timan A.F. Approximation theory for real-variable functions, Fizmatgiz, 1960. (in Russian)
Erdös P., Turan P. "The role of the Lebesgue constant functions in the theory of the Lagrange interpolation", Acta Math. Hungar., 1955; 6.
DOI: https://doi.org/10.15421/248704
Refbacks
- There are currently no refbacks.
Copyright (c) 1987 O.V. Davydov
This work is licensed under a Creative Commons Attribution 4.0 International License.