On uniqueness of the best non-symmetric approximant for vector-valued functions in $$$L_1$$$ metric
Abstract
We describe classes of test functions that characterize the space of uniqueness of the best non-symmetric $$$L_1$$$-approximant for vector-valued functions that are continuous in the interval.
Full Text:
PDF (Русский)References
Babenko V.F., Glushko V.N. "On uniqueness of the best approximant in metric of $$$L_1$$$ space", Ukrainian Math. J., 1994; 46(5): pp. 475-483. doi:10.1007/BF01058514
Strauss H. "Uniqueness in $$$L_1$$$-approximation", Math. Zeitschr., 1981; 176: pp. 63-74. (in German) doi:10.1007/BF01258905
Babenko V.F., Zaiats I.F. "Non-symmetric $$$L_1$$$-approximations of vector-valued functions", Approx. of functions and summ. of series, 1991.
Glushko V.N. Conditions of uuniqueness of the best one-side $$$L_1$$$-approximant, Diss. Cand. Phys.-Math. Sci., 1992.
DOI: https://doi.org/10.15421/249805
Refbacks
- There are currently no refbacks.
Copyright (c) 1998 M.Ye. Gorbenko

This work is licensed under a Creative Commons Attribution 4.0 International License.











