Properties of bounded and precompact by measure sets

A.A. Korniienko (Dnipropetrovsk State University)
S.A. Pichugov (Dnipropetrovsk State University), https://orcid.org/0000-0002-4263-4429

Abstract


In the space of convergence by measure we investigate the properties of convex bounded and convex precompact sets.

References


Maurey B. "Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $$$L^p$$$", Asterisque, 1974; 11: pp. 1-163. (in French)

Pichugov S.A. "Translation invariant operators in linear metric spaces", Analys. Math., 1992; 18(3): pp. 237-248. doi:10.1007/bf01911088

Stein E.M. "On limits of sequences of operators", Ann. Math., 1961; 74(1): pp. 140-170. doi:10.2307/1970308

Rudin W. Functional Analysis, 1975.


Berg J., Lofstrom J. Interpolative spaces, 1980.

Krasnoselskii M.A., Zabreiko P.P., Pustylnik Ye.I., Sobolevskii P.Ye. Integral operators in spaces of summable functions, 1966.

Nikishin Ye.M. "Resonance theorems and superlinear operators", Uspekhi matem. nauk, 1970; 25(6): pp. 129-191.

Pichugov S.A. "Sequences of operators that are bounded in measure", Matem. sbor., 1994; 185(1): pp. 43-72.




DOI: https://doi.org/10.15421/249809

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 1998 A.A. Korniienko, S.A. Pichugov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU