Strengthening the Comparison Theorem and Kolmogorov Inequality in the Asymmetric Case

V.A. Kofanov (Oles Honchar Dnipro National University), https://orcid.org/0000-0003-0392-2257
K.D. Sydorovych (Oles Honchar Dnipro National University)

Abstract


We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.
In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:
$$
\|x^{(k)}_{\pm }\|_{\infty}\le \frac
{\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }}
{E_0(\varphi _r( \cdot \;;\alpha ,\beta ))^{1-k/r}_{\infty }}
|||x|||^{1-k/r}_{\infty}
\|\alpha^{-1}x_+^{(r)}+\beta^{-1}x_-^{(r)}\|_\infty^{k/r}
$$
for functions $$$x \in L^r_{\infty }(\mathbb{R})$$$, where
$$
|||x|||_\infty:=\frac12 \sup_{\alpha ,\beta}\{ |x(\beta)-x(\alpha)|:x'(t)\neq 0 \;\;\forall
t\in (\alpha ,\beta) \}
$$
$$$k,r \in \mathbb{N}$$$, $$$k<r$$$, $$$\alpha, \beta > 0$$$, $$$\varphi_r( \cdot \;;\alpha ,\beta )_r$$$ is the asymmetric perfect spline of Euler of order $$$r$$$ and $$$E_0(x)_\infty $$$ is the best uniform approximation of the function $$$x$$$ by constants.


Keywords


Kolmogorov comparison theorem; Kolmogorov inequality; asymmetric case; strengthening

MSC 2020


41A17; 41A44; 42A05; 41A15

Full Text:

PDF

References


Hörmander L. "A new proof and a generalization of an inequality of Bohr", Math. Scand., 1954; 2: pp. 33-45. doi:10.7146/math.scand.a-10392

Ligun A.A. "Inequalities for upper bounds of functionals", Analysis Math., 1976; 2(1): pp. 11-40. doi:10.1007/BF02079905

Kofanov V.A. "Strengthening the comparison theorem and Kolmogorov's inequality and their applications", Ukrainian Math. J., 2002; 54(10): pp. 1348-1355. doi:10.1023/A:1023728202727


Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, 1985; pp. 252-263.

Babenko V.F. "Asymmetric extremal problems in approximation theory", Dokl. AN sssr, 1983; 269(3): pp. 521-524.

Kofanov V.A. "On a strengthening of Kolmogorov's inequality", Res. Math., 2001; 6: pp. 63-67.




DOI: https://doi.org/10.15421/242204

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 V.A. Kofanov, K.D. Sydorovych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU