Strengthening the Comparison Theorem and Kolmogorov Inequality in the Asymmetric Case
Abstract
We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.
In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:
$$
\|x^{(k)}_{\pm }\|_{\infty}\le \frac
{\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }}
{E_0(\varphi _r( \cdot \;;\alpha ,\beta ))^{1-k/r}_{\infty }}
|||x|||^{1-k/r}_{\infty}
\|\alpha^{-1}x_+^{(r)}+\beta^{-1}x_-^{(r)}\|_\infty^{k/r}
$$
for functions $$$x \in L^r_{\infty }(\mathbb{R})$$$, where
$$
|||x|||_\infty:=\frac12 \sup_{\alpha ,\beta}\{ |x(\beta)-x(\alpha)|:x'(t)\neq 0 \;\;\forall
t\in (\alpha ,\beta) \}
$$
$$$k,r \in \mathbb{N}$$$, $$$k<r$$$, $$$\alpha, \beta > 0$$$, $$$\varphi_r( \cdot \;;\alpha ,\beta )_r$$$ is the asymmetric perfect spline of Euler of order $$$r$$$ and $$$E_0(x)_\infty $$$ is the best uniform approximation of the function $$$x$$$ by constants.
Keywords
MSC 2020
Full Text:
PDFReferences
Hörmander L. "A new proof and a generalization of an inequality of Bohr", Math. Scand., 1954; 2: pp. 33-45. doi:10.7146/math.scand.a-10392
Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Izbr. tr. Matematika, mekhanika, Nauka, Moscow, 1985; pp. 252-263. (in Russian)
Ligun A.A. "Inequalities for upper bounds of functionals", Analysis Math., 1976; 2(1): pp. 11-40. doi:10.1007/BF02079905
Babenko V.F. "Asymmetric extremal problems in approximation theory", Dokl. AN SSSR, 1983; 269(3): pp. 521-524. (in Russian)
Kofanov V.A. "Strengthening the comparison theorem and Kolmogorov's inequality and their applications", Ukrainian Math. J., 2002; 54(10): pp. 1348-1355. doi:10.1023/A:1023728202727
Kofanov V.A. "On a strengthening of Kolmogorov's inequality", Res. Math., 2001; 6: pp. 63-67. (in Russian)
DOI: https://doi.org/10.15421/242204
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 V.A. Kofanov, K.D. Sydorovych
This work is licensed under a Creative Commons Attribution 4.0 International License.