Two sharp inequalities for operators in a Hilbert space
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Ainulloev N. "An exact estimate of the second derivative in $$$L_p$$$", Math. Notes AN SSSR, 1991; 49(5): pp. 443-445. doi:10.1007/BF01142636
Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space, Vyshcha shkola, 1977. (in Russian)
Babenko V.F., Bilichenko R.O. "Approximation of unbounded operators by bounded operators in a Hilbert space", Ukrainian Math. J., 2009; 61(2): pp. 179-187. doi:10.1007/s11253-009-0212-2
Babenko V.F., Bilichenko R.O. "The best approximation of classes, defined by powers of self-adjoint operators acting in Hilbert space, by other classes", Res. Math., 2009; 17: pp. 23-30. (in Russian) doi:10.15421/240904
Berezanskij Yu.M., Us G.F., Sheftel' Z.G. Functional analysis, Vyshcha Shkola, 1990. (in Russian)
Kuptsov N.P. "Direct and converse theorems of approximation theory and semigroups of operators", Russian Math. Surv., 1968; 23(4): pp. 115-177. doi:10.1070/RM1968v023n04ABEH003773
Taikov L.V. "Some exact inequalities in approximation theory for functions", Anal. Math., 1976; 2: pp. 77-85.
Trenogin V.A. Functional Analysis, Nauka, 1980.
DOI: https://doi.org/10.15421/242206
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 N.O. Kriachko
This work is licensed under a Creative Commons Attribution 4.0 International License.