Two sharp inequalities for operators in a Hilbert space
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Ainulloev N. "An exact estimate of the second derivative in $$$L_p$$$", Math. Notes AN SSSR, 1991; 49(5): pp. 443-445. doi:10.1007/BF01142636
Babenko V.F., Bilichenko R.O. "Approximation of unbounded operators by bounded operators in a Hilbert space", Ukrainian Math. J., 2009; 61(2): pp. 179-187. doi:10.1007/s11253-009-0212-2
Berezanskij Yu.M., Us G.F., Sheftel Z.G. Functional Analysis, Elsevier Sci., 2003.
Taikov L.V. "Some exact inequalities in approximation theory for functions", Analys. Math., 1976; 2: pp. 77-85.
Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space, Vyshcha shkola, 1977.
Babenko V.F., Bilichenko R.O. "The best approximation of classes, defined by powers of self-adjoint operators acting in Hilbert space, by other classes", Res. Math., 2009; 17: pp. 23-30.
Kuptsov N.P. "Direct and converse theorems of approximation theory and semigroups of operators", russ. Math. Surv., 1968; 23(4): pp. 115-177.
Trenogin V.A. Functional Analysis, Nauka, 1980.
DOI: https://doi.org/10.15421/242206
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 N.O. Kriachko

This work is licensed under a Creative Commons Attribution 4.0 International License.











