On Landau-Kolmogorov type inequalities for charges and their applications

V.F. Babenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-6677-1914
V.V. Babenko (Drake University), https://orcid.org/0000-0003-4859-4437
O.V. Kovalenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-0446-1125
N.V. Parfinovych (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-3448-3798

Abstract


In this article we prove sharp Landau-Kolmogorov type inequalities on a class of charges defined on Lebesgue measurable subsets of a cone in $$$\mathbb{R}^d$$$, $$$d\geqslant 1$$$, that are absolutely continuous with respect to the Lebesgue measure. In addition we solve the Stechkin problem of approximation of the Radon-Nikodym derivative of such charges by bounded operators and two related problems. As an application, we also solve these extremal problems on classes of essentially bounded functions $$$f$$$ such that their distributional partial derivative $$$\frac{\partial ^d f}{\partial x_1\ldots\partial x_d}$$$ belongs to the Sobolev space $$$W^{1,\infty}$$$.

Keywords


Landau-Kolmogorov type inequality; Stechkin's problem; gradient; charge; mixed derivative

MSC 2020


26D10; 41A17; 41A44

Full Text:

PDF

References


Babenko V., Babenko Yu.V., Kovalenko O.V. "On multivariate Ostrowski type inequalities and their applications", Math. Ineq. Appl., 2020; 23(2): pp. 569-583. doi:10.7153/mia-2020-23-47

Babenko V., Babenko Yu.V., Kovalenko O.V. "On asymptotically optimal cubatures for multidimensional Sobolev spaces", Res. Math., 2021; 29(2): pp. 15-27. doi:10.15421/242106

Babenko V., Kovalenko O., Parfinovych N. "On approximation of hypersingular integral operators by bounded ones", J. Math. Anal. Appl., 2022; 513(2): 126215. doi:10.1016/j.jmaa.2022.126215

Babenko V.F., Kofanov V.A., Pichugov S.A. "Multivariate inequalities of Kolmogorov type and their applications", Multivariate approximation and splines, Basel, 1997; pp. 1-12. doi:10.1007/978-3-0348-8871-4_1

Berezanskij Yu.M., Us G.F., Sheftel Z.G. Functional Analysis, Elsevier Sci., 2003.

Buslaev A.P., Tikhomirov V.M. "On inequalities for derivatives in multidimensional case", Math. Notes, 1979; 25(1): pp. 32-40. doi:10.1007/BF01138146

Kofanov V.A., Popovich I.V. "Sharp Nagy type inequalities for the classes of functions with given quotient of the uniform norms of positive and negative parts of a function", Res. Math., 2020; 28(1): pp. 3-11. doi:10.15421/242001

Konovalov V.N. "Sharp inequalities for norms of functions, third partial and second mixed derivatives", Math. Notes, 1978; 23(1): pp. 38-44. doi:10.1007/BF01104884

Landau E. "Über einen satz des herrn Littlewood", Rend. Circ. Mat. Palermo, 1913; 35: pp. 265-276. (in German) doi:10.1007/BF03015606

Lieb E.H., Loss M. Analysis, Crm Proceedings & Lecture Notes. Am. Math. Soc., 2001.

Sz.-Nagy B. "Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung", Acta. Sci. Math., 1941; 10: pp. 64-74. (in German)

Stechkin S.B. "Best approximation of linear operators", Math. Notes, 1967; 1(2): pp. 91-99. doi:10.1007/BF01268056

Timofeev V.G. "Landau inequality the function of several variables", Math. Notes, 1985; 37(5): pp. 369-377. doi:10.1007/BF01157968


Arestov V.V. "Approximation of unbounded operators by bounded operators and related extremal problems", russ. Math. Surv., 1996; 51(6): 1093.

Babenko V.F. "On sharp inequalities of Kolmogorov type for bivariate functions", Dokl. NAN Ukrajiny, 2000; 5: pp. 7-11.

Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Babenko V.F., Parfinovich N.V. "Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions and some applications", Proc. Steklov Inst. Math., 2012; 277: pp. 9-20.

Kolmogorov A.N. "On inequalities between upper bounds of consecutive derivatives of the function on infinite interval", Uch. zap. MGU. Matematika, 1939; 30(3): pp. 3-16.

Timoshin O.A. "Sharp inequalities between the derivatives of the second and third order", Dokl. rAN, 1995; 344(1): pp. 20-22.




DOI: https://doi.org/10.15421/242301

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 V.F. Babenko, V.V. Babenko, O.V. Kovalenko, N.V. Parfinovych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU