Derivations of rings of infinite matrices

O.O. Bezushchak (Taras Shevchenko National University of Kyiv), https://orcid.org/0000-0003-3654-6753

Abstract


We describe derivations of several important associative and Lie rings of infinite matrices over general rings of coefficients.

Keywords


ring of infinite matrices; derivation

MSC 2020


15B30; 16W25

Full Text:

PDF

References


Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd. "On Herstein's Lie map conjectures I", Trans. Amer. Math. Soc., 2001; 353: pp. 4235-4260. doi:10.1090/S0002-9947-01-02731-3

Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd. "On Herstein's Lie map conjectures II", J. Algebra, 2001; 238: pp. 239-264. doi:10.1006/jabr.2000.8628

Beidar K.I., Brešar M., Chebotar M.A., Martindale W.S. 3rd. "On Herstein's Lie map conjectures III", J. Algebra, 2002; 249: pp. 59-94. doi:10.1006/jabr.2001.9076

Bezushchak O. :Automorphisms and derivations of algebras of infinite matrices", Linear Algebra Appl., 2022; 650: pp. 42-59. doi:10.1016/j.laa.2022.05.020

Hołubowski W., Żurek S. "Lie algebras of infinite matrices: ideals and derivations", 2021. arXiv:1806.01099v2

Jacobson N. Lie algebras, Dover Publ., Inc, New York, 1979. (Replication of the 1962 original.)




DOI: https://doi.org/10.15421/242310

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 O.O. Bezushchak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU