On the domains of convergence of the branched continued fraction expansion of ratio $$$H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})$$$
Abstract
The paper considers the problem of establishing the convergence criteria of the branched continued fraction expansion of the ratio of Horn's hypergeometric functions $$$H_4$$$. To solve it, the technique of expanding the domain of convergence of the branched continued fraction from the known small domain of convergence to a wider domain of convergence is used. For the real and complex parameters of the Horn hypergeometric function $$$H_4$$$, a number of convergence criteria of the branched continued fraction expansion under certain conditions to its coefficients in various unbounded domains of the space have been established.
Keywords
MSC 2020
Full Text:
PDFReferences
Antonova T., Dmytryshyn R., Goran V. "On the analytic continuation of Lauricella-Saran hypergeometric function $$$F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})$$$", Mathematics, 2023; 11(21): 4487. doi:10.3390/math11214487
Antonova T., Dmytryshyn R., Kravtsiv V. "Branched continued fraction expansions of Horn's hypergeometric function $$$H_3$$$ ratios", Mathematics, 2021; 9(2): p. 148. doi:10.3390/math9020148
Antonova T., Dmytryshyn R., Kril P., Sharyn S. "Representation of some ratios of Horn's hypergeometric functions $$$\mathrm{H}_7$$$ by continued fractions", Axioms, 2023; 12(8): 738. doi:10.3390/axioms12080738
Antonova T., Dmytryshyn R., Kurka R. "Approximation for the ratios of the confluent hypergeometric function $$$\Phi_D^{(N)}$$$ by the branched continued fractions", Axioms, 2023; 11(9): 426. doi:10.3390/axioms11090426
Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. "On some branched continued fraction expansions for Horn's hypergeometric function $$$H_4(a,b;c,d;z_1,z_2)$$$ ratios", Axioms, 2023; 12(3): 299. doi:10.3390/axioms12030299
Antonova T., Dmytryshyn R., Sharyn S. "Branched continued fraction representations of ratios of Horn's confluent function $\mathrm{H}_6$", Constr. Math. Anal., 2023; 6(1): pp. 22-37. doi:10.33205/cma.1243021
Antonova T., Dmytryshyn R., Sharyn S. "Generalized hypergeometric function $$${}_3F_2$$$ ratios and branched continued fraction expansions", Axioms, 2021; 10(4): p. 310. doi:10.3390/axioms10040310
Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction $$$\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$$$, Ukrainian Math. J., 2020; 72(7): pp. 1018-1029. doi:10.1007/s11253-020-01841-7
Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction whose partial denominators are equal to unity", Mat. Stud., 2020; 54(1): pp. 3-14. doi:10.30970/ms.54.1.3-14
Antonova T.M. "On convergence of branched continued fraction expansions of Horn's hypergeometric function ratios", Carpathian Math. Publ., 2021; 13(3): pp. 642-650. doi:10.15330/cmp.13.3.642-650
Antonova T.M., Sus' O.M., Vozna S.M. "Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions", Ukrainian Math. J., 2022; 74(4): pp. 501-518. doi:10.1007/s11253-022-02079-1
Antonova T.M., Sus' O.M. "Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions", J. Math. Sci., 2018; 228(1): pp. 1-10. doi:10.1007/s10958-017-3601-3
Bodnar D.I., Bilanyk I.B. "Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables", J. Math. Sci., 2022; 265(3): pp. 423-437. doi:10.1007/s10958-022-06062-w
Bodnar D.I., Bilanyk I.B. "On the convergence of branched continued fractions of a special form in angular domains", J. Math. Sci., 2020; 246(2): pp. 188-200. doi:10.1007/s10958-020-04729-w
Bodnar D.I., Bilanyk I.B. "Parabolic convergence regions of branched continued fractions of the special form", Carpathian Math. Publ., 2021; 13(3): pp. 619-630. doi:10.15330/cmp.13.3.619-630
Bodnar D.I., Bilanyk I.B. "Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions", Ukrainian Math. J., 2023; 74(9): pp. 1317-1333. doi:10.1007/s11253-023-02138-1
Bodnar D.I., Bodnar O.S., Bilanyk I.B. "A truncation error bound for branched continued fractions of the special form on subsets of angular domains", Carpathian Math. Publ., 2023; 15(2): pp. 437-448. doi:10.15330/cmp.15.2.437-448
Bodnar D.I. Branched Continued Fractions, Naukova Dumka, Kyiv, 1986. (in Russian)
Bodnar D.I., Manzii O.S. "Expansion of the ratio of Appel hypergeometric functions $$$F_3$$$ into a branching continued fraction and its limit behavior", J. Math. Sci., 2001; 107(1): pp. 3550-3554. doi:10.1023/A:1011977720316
Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. "On the convergence of multidimensional S-fractions with independent variables", Carpathian Math. Publ., 2020; 12(2): pp. 353-359. doi:10.15330/cmp.12.2.353-359
Bodnarchuk P.I., Skorobogatko V.Y. Branched continued fractions and their applications, Naukova Dumka, 1974.
Dmytryshyn R.I. "Associated branched continued fractions with two independent variables", Ukrainian Math. J., 2015; 66(9): pp. 1312-1323. doi:10.1007/s11253-015-1011-6
Dmytryshyn R.I., Lutsiv I.-A.V. "Three- and four-term recurrence relations for Horn's hypergeometric function $$$H_4$$$", Res. Math., 2022; 30(1): pp. 21-29. doi:10.15421/242203
Dmytryshyn R.I. "Convergence of multidimensional A- and J-fractions with independent variables", Comput. Methods Funct. Theory, 2022; 22(2): pp. 229-242. doi:10.1007/s40315-021-00377-6
Dmytryshyn R.I. "Convergence of some branched continued fractions with independent variables", Mat. Stud., 2017; 47(2): pp. 150-159. doi:10.15330/ms.47.2.150-159
Dmytryshyn R.I., Sharyn S.V. "Approximation of functions of several variables by multidimensional S-fractions with independent variables", Carpathian Math. Publ., 2021; 13(3): pp. 592-607. doi:10.15330/cmp.13.3.592-607
Dmytryshyn R.I. "The multidimensional generalization of g-fractions and their application", J. Comp. Appl. Math., 2004; 164-165: pp. 265-284. doi:10.1016/S0377-0427(03)00642-3
Dmytryshyn R.I. "Two-dimensional generalization of the Rutishauser qd-algorithm", J. Math. Sci., 2015; 208(3): pp. 301-309. doi:10.1007/s10958-015-2447-9
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. Higher transcendental functions. Vol. 1, McGraw-Hill Book Co., 1953.
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. Higher transcendental functions. Vol. 2, McGraw-Hill Book Co., 1953.
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. Higher transcendental functions. Vol. 3, McGraw-Hill Book Co., 1953.
Exton H. Multiple Hypergeometric Functions and Applications, Halsted Press, 1976.
Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L. "On convergence of function $$$F_4(1, 2; 2, 2; z_1, z_2)$$$ expansion into a branched continued fraction", Math. Model. Comput., 2022; 9(3): pp. 767-778. doi:10.23939/mmc2022.03.767
Horn J. "Hypergeometrische funktionen zweier veränderlichen", Math. Ann., 1931; 105(1): pp. 381-407. (in German) doi:10.1007/BF01455825
Hoyenko N.P., Manzij O.S. "Expansion of Appel $$$F_1$$$ and Lauricella $$$F_D^{(N)}$$$ hypergeometric functions into branched continued fractions", Visnyk Lviv. Univ. Ser. Mech.-Math., 1997; 48: pp. 17-26.
Jones W.B., Thron W.J. Continued fractions: analytic theory and applications, Addison-Wesley Pub. Co., 1980.
Manzii O.S. "Investigation of expansion of the ratio of Appel hypergeometric functions $$$F_3$$$ into a branching continued fraction", Approximation Theory and Its Applications: Proceedings of IM NAS of Ukraine, 2000; 31: pp. 344-353.
DOI: https://doi.org/10.15421/242311
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 R.I. Dmytryshyn, I.-A.V. Lutsiv, O.S. Bodnar
This work is licensed under a Creative Commons Attribution 4.0 International License.