On maximality of some solvable and locally nilpotent subalgebras of the Lie algebra $$$W_n(K)$$$
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Amemiya I., Masuda K., Shiga K. "Lie algebras of differential operators", Osaka J. Math., 1975; 12: pp. 139-172. doi:10.18910/9498
Bavula V.V. "Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras", Izv. Math., 2013; 77: pp. 1067-1104. doi:10.1070/IM2013v077n06ABEH002670
González-López A., Kamran N., Olver P.J. "Lie algebras of vector fields in the real plane", Proc. London Math. Soc., 1992; 64(2): pp. 339-368. doi:10.1112/plms/s3-64.2.339
Dynkin E.B. "Maximal subgroups of classical groups", Trudy Moskovskogo Matem. obshchestva, 1952; 1 (Russian); English transl. in: Moscow Math. Soc. Translations Ser. 2, v.6: pp. 245-378.
Lie S. Theorie der Transformationsgruppen, Bd. 3. Teubner, Leipzig, 1893. (in German)
Makedonskyi Ie.O., Petravchuk A.P. "On nilpotent and solvable Lie algebras of derivations", J. Algebra, 2014; 401: pp. 245-257. doi:10.1016/j.jalgebra.2013.11.021
Martello M., Ribon J. "Derived length of solvable groups of local diffeomorphisms", Math. Ann., 2014; 358: pp. 701-728. doi:10.1007/s00208-013-0975-5
Skutin A. "Maximal Lie algebras among locally nilpotent derivations", Mat. Sb., 2021; 212(2): pp. 138-146. doi:10.1070/SM9360
DOI: https://doi.org/10.15421/242312
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 D.I. Efimov, M.S. Sydorov, K.Ya. Sysak
This work is licensed under a Creative Commons Attribution 4.0 International License.