Virtual endomorphisms of the group $$$pg$$$

I. Bondarenko (Taras Shevchenko National University of Kyiv), https://orcid.org/0000-0002-9491-211X
D. Zashkolny (Taras Shevchenko National University of Kyiv)

Abstract


A virtual endomorphism of a group $$$G$$$ is a homomorphism of the form $$$\phi:H\rightarrow G$$$, where $$$H<G$$$ is a subgroup of finite index. A virtual endomorphism $$$\phi:H\rightarrow G$$$ is called simple if there are no nontrivial normal $$$\phi$$$-invariant subgroups, that is, the $$$\phi$$$-core is trivial. We describe all virtual endomorphisms of the plane group $$$pg$$$, also known as the fundamental group of the Klein bottle. We determine which of these virtual endomorphisms are simple, and apply these results to the self-similar actions of the group. We prove that the group $$$pg$$$ admits a transitive self-similar (as well as finite-state) action of degree $$$d$$$ if and only if $$$d\geq 2$$$ is not an odd prime, and admits a self-replicating action of degree $$$d$$$ if and only if $$$d\geq 6$$$ is not a prime or a power of $$$2$$$.

Keywords


virtual endomorphism; plane group; self-similar action

MSC 2020


Pri 20F65, Sec 20H15, 20E08

Full Text:

PDF

References


Bartholdi L., Sunik Z. "Some solvable automaton groups", Contemp. Math., 2006; 394: pp. 11-30. doi:10.1090/conm/394/07431

Berlatto A., Sidki S. "Virtual endomorphisms of nilpotent groups", Groups Geom. Dyn., 2007; 1(1): pp. 21-46. doi:10.4171/GGD/2

Bondarenko I., Kravchenko R. "Finite-state self-similar actions of nilpotent groups", Geom. Dedicata, 2012; 163(1): pp. 339-348. doi:https://doi.org/10.1007/s10711-012-9752-y

Brunner A.M., Sidki S. "The generation of $$${\rm GL}(n,\mathbf Z)$$$ by finite state automata", Internat. J. Algebra Comput., 1998; 8: pp. 127-139. doi:10.1142/S0218196798000077

Cannon J.W., Floyd W.J., Parry W., Pilgrim K.M. "Subdivision rules and virtual endomorphisms", Geom. Dedicata, 2009; 141(1): pp. 181-195. doi:10.1007/s10711-009-9352-7

Dantas A.C., Santos T.M., Sidki S.N. "Intransitive self-similar groups", J. Algebra, 2021; 567: pp. 564-581. doi:10.1016/j.jalgebra.2020.09.033

Dantas A.C., Sidki S. "On self-similarity of wreath products of abelian groups", Groups Geom. Dyn., 2018; 12(3): pp. 1061-1068. doi:10.4171/GGD/462

Farkas D.R. "Crystallographic groups and their mathematics", Rocky Mountain J. Math., 1981; 11(4): pp. 511-551.

Kapovich M. "Arithmetic aspects of self-similar groups", Groups Geom. Dyn., 2012; 6(4): pp. 737-754. doi:10.4171/GGD/172

Nekrashevych V. "Virtual endomorphisms of groups", Algebra Discr. Math., 2002; 1: pp. 88-128.

Nekrashevych V. Self-similar groups, Providence, RI: AMS, 2005.

Noseda F., Snopce I. "On self-similarity of p-adic analytic pro-p groups of small dimension", J. Algebra, 2019; 540: pp. 317-345. doi:10.1016/j.jalgebra.2019.09.003

Szczepanski A. Geometry of crystallographic groups, Singapore; Hackensack (N.J.); London: World Scientific, Cop., 2012.




DOI: https://doi.org/10.15421/242401

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 I. Bondarenko, D. Zashkolny

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU