A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function

K.K. Chaudhary (The Maharaja Sayajirao University of Baroda), https://orcid.org/0000-0001-7812-1089
S.B. Rao (Maharaja Sayajirao University of Baroda), https://orcid.org/0000-0002-5672-4927

Abstract


This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between $$${}_{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$$$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by $$${}_{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$$$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus.

Keywords


basic hypergeometric functions in one variable $$${}_r \phi _s$$$; q-calculus and related topics; Mittag-Leffler functions and generalizations; integral transforms of special functions

MSC 2020


Pri 33D15, Sec 05A30, 33E12, 44A20

Full Text:

PDF

References


Albayrak D., Purohit S.D., Uçar F. "On q-analogues of sumudu transform", Analele ştiin. Univ. Ovidius Const. Ser. Matem., 2013; 21(1): pp. 239-259. doi:10.2478/auom-2013-0016

Albayrak D., Purohit S.D., Uçar F. "On q-sumudu transforms of certain q-polynomials", Filomat, 2013; 27(2): pp. 411-427. doi:10.2298/FIL1302411A

Al-Omari S.K. "On q-analogues of the natural transform of certain q-bessel functions and some application", Filomat, 2017; 31(9): pp. 2587-2598. doi:10.2298/FIL1709587A

Annaby M.H., Mansour Z.S. q-Fractional Calculus and Equations, vol. 2056. Springer, Berlin, Heidelberg, 2012.

Bhardwaj H., Sharma P. "An application of g-hypergeometric series", GANITA, 2021; 71(1): pp. 161-169.

Ernst T. A comprehensive treatment of q-calculus, Springer Science & Business Media, 2012.

Exton H. q-Hypergeometric functions and applications, John Wiley & Sons, Inc., New York, 1983.

Garg M., Chanchlani L., Kalla S. "A q-analogue of generalized Mittag-Leffler function", Algebras Groups Geom., 2011; 28(2): pp. 205-223.

Gasper G., Rahman M. Basic Hypergeometric Series, Cambridge Univ. Press, 1990.

Gauss C.F. Disquistiones Generales circa Seriem Infinitam 1+ $$$\alpha$ $$$\beta$$$/1. $$$\gamma$$$x+ $$$\alpha$$$ ($$$\alpha$$$+ 1) $$$\beta$$$ ($$$\beta$$$+ 1)/1.2. $$$\gamma$$$ ($$$\gamma$$$+ 1) xx+ $$$\alpha$$$ ($$$\alpha$$$+ 1)($$$\alpha$$$+ 2) $$$\beta$$$ ($$$\beta$$$+ 1)($$$\beta$$$+ 2)/1.2. 3. $$$\gamma$$$ ($$$\gamma$$$+ 1)($$$\gamma$$$+ 2) x\^{} 3+ etc., Thesis, Gottingen, 1866. (in Latin)

Hahn W. "Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation", Math. Nachrichten 1949; 2(6): pp. 340-379.

Heine E. "Über die Reihe 1+(q$$$\alpha$$$- 1)(q$$$\beta$$$- 1)(q- 1)(q$$$\gamma$$$- 1) z+(q$$$\alpha$$$- 1)(q$$$\alpha$$$+ 1- 1)(q$$$\beta$$$- 1)(q$$$\beta$$$+ 1- 1)(q- 1)(q2- 1)(q$$$\gamma$$$- 1)(q$$$\gamma$$$+ 1- 1) z2+...", J. Reine Angew. Math., 1846; 32: pp. 210-212.

Heine E. "Untersuchungen über die Reihe", J. Reine Angew. Math., 1847; 34: pp. 285-328. doi:10.1515/crll.1847.34.285

Jackson F.H. "On a q-definite integrals", Quart. J. Pure Appl. Math., 1910; 41: pp. 193-203.

Mansour Z.S. "Linear sequential q-difference equations of fractional order", Fract. Calc. Appl. Anal., 2009; 12(2): pp. 159-178.

Mittag-Leffler G.M. "Sur la nouvelle fonction $$$E_\alpha (x)$$$", CR Acad. Sci. Paris, 1903; 137(2): pp. 554-558. (in French)

Prabhakar T.R. "A singular integral equation with a generalized Mittag-Leffler function in the kernel", Yokohama Math. J., 1971; 19(1): pp. 7-15.

Rainville E.D. Special functions, The MacMillan Company, 1960.

Rao S.B. "Explicit Representation and some Integral transforms of sequence of functions associated with the Wright type Generalized Hypergeometric Function", Glob. J. Pure Appl. Math., 2017; 13(9): pp. 6703-6712.

Rao S.B., Patel A.D., Prajapati J.C., Shukla A.K. "Some properties of generalized hypergeometric function", Comm. Korean Math. Soc., 2014; 28(2): pp. 303-317.

Rao S.B., Prajapati J.C., Patel A.D., Shukla A.K. "Some Properties of Wright-type Generalized Hypergeometric Function via fractional calculus", Adv. Diff. Equ., 2014; 119: pp. 1-11. doi:10.1186/1687-1847-2014-119

Rao S.B., Prajapati J.C., Shukla A.K. "Wright type Hypergeometric functions and its properties", Adv. Pure Math., 2013; 3(3): pp. 335-342. doi:10.4236/apm.2013.33048

Rao S.B., Salehbhai I.A., Shukla A.K. "On sequence of functions Containing Generalized Hypergeometric Function", Math. Sci. Res. J., 2013; 17(4): pp. 98-110.

Rao S.B., Shukla A.K. "Note on Generalized Hypergeometric Function", Integral transforms and special functions, 2013; 24(11): pp. 896-904. doi:10.1080/10652469.2013.773327

Sharma S.K., Jain R. "On some properties of generalized q-Mittag-Leffler function", Math. Aeterna, 2014; 4(6): pp. 613-619.

Shukla A.K., Prajapati J.C. "On a generalization of Mittag-Leffler function and its properties", J. Math. Analysis Appl., 2007; 336(2): pp. 797-811. doi:10.1016/j.jmaa.2007.03.018

Virchenko N., Kalla S.L., Al-Zamel A. "Some Results On a Generalized Hypergeometric Function", Integral Transforms and Special Functions, 2001; 12(1): pp. 89-100. doi:10.1080/10652460108819336

Waghela D., Rao S.B. "A Note on Sequence of Functions associated with the Generalized Jacobi polynomial", Res. Math., 2023; 31(2): pp. 62-78. doi:10.15421/242316

Watson G.N. "The continuation of functions defined by generalized hypergeometric series", Trans. Camb. Phil. Soc., 1910; 21: pp. 281-299.

Wiman A. "Über den Fundamentalsatz in der Teorie der Funktionen $$$E_a(x)$$$", Acta Math., 1905; 29: pp. 191-201. doi:10.1007/BF02403202

Wright E.M. "On the coefficients of power series having exponential singularities", J. Lond. Math. Soc., 1933; 8(1): pp. 71-79. doi:10.1112/jlms/s1-8.1.71




DOI: https://doi.org/10.15421/242402

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 K.K. Chaudhary, S.B. Rao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU