The norming set of a bilinear form on a certain normed space $$$\mathbb{R}^2$$$
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Aron R.M., Finet C., Werner E. "Some remarks on norm-attaining $$$n$$$-linear forms", Function spaces, Edwardsville, IL, 1994; Lecture Notes in Pure and Appl. Math., Dekker, 1995; 172: pp. 19-28.
Bishop E., Phelps R. "A proof that every Banach space is subreflexive", Bull. Amer. Math. Soc., 1961; 67: pp. 97-98. doi:10.1090/S0002-9904-1961-10514-4
Choi Y.S., Kim S.G. "Norm or numerical radius attaining multilinear mappings and polynomials", J. London Math. Soc., 1996; 54(1): pp. 135-147. doi:10.1112/jlms/54.1.135
Dineen S. Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, 1999. doi:10.1007/978-1-4471-0869-6
Jimenez Sevilla M., Paya R. "Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces", Studia Math., 1998; 127: pp. 99-112. doi:10.4064/sm-127-2-99-112
Kim S.G. "The norming set of a bilinear form on $$$l_{\infty}^2$$$", Comment. Math., 2020; 60(1-2): pp. 37-63.
Kim S.G. "The norming set of a polynomial in $$${\mathcal P}(^2 l_{\infty}^2)$$$", Honam Math. J., 2020; 42(3): pp. 569-576.
Kim S.G. "The norming set of a symmetric bilinear form on the plane with the supremum norm", Mat. Stud., 2021; 55(2): pp. 171-180. doi:10.30970/ms.55.2.171-180
Kim S.G. "The norming set of a symmetric 3-linear form on the plane with the $$$l_1$$$-norm", New Zealand J. Math., 2021; 51: pp. 95-108. doi:10.53733/177
Kim S.G. "The norming sets of $$${\mathcal L}(^2 l_1^2)$$$ and $$${\mathcal L}_s(^2 l_1^3)$$$", Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci., 2022; 2(2): pp. 125-149. doi:10.31926/but.mif.2022.2.64.2.10
Kim S.G. "The norming sets of $$${\mathcal L}(^2 \mathbb{R}^2_{h(w)})$$$", Acta Sci. Math. (Szeged), 2023; 89(1-2): pp. 61-79. doi:10.1007/s44146-023-00078-7
Kim S.G. "Norm attaining bilinear forms of $$${\mathcal L}(^2 d_{*}(1, w)^2)$$$ at given vectors", Res. Math., 2023; 31(2): pp. 36-48. doi:10.15421/242313
DOI: https://doi.org/10.15421/242406
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 S.G. Kim
This work is licensed under a Creative Commons Attribution 4.0 International License.