Action of derivations on polynomials and on Jacobian derivations

O.Ya. Kozachok (Taras Shevchenko National University of Kyiv), https://orcid.org/0009-0006-5875-5053
A.P. Petravchuk (Taras Shevchenko National University of Kyiv), https://orcid.org/0000-0003-0371-7771

Abstract


Let $$$\mathbb K$$$ be a field of characteristic zero, $$$A := \mathbb K[x_{1}, x_{2}]$$$ the polynomial ring and $$$W_2(\mathbb K)$$$ the Lie algebra of all $$$\mathbb K$$$-derivations on $$$A$$$. Every polynomial $$$f \in A$$$ defines a Jacobian derivation $$$D_f\in W_2(\mathbb K)$$$ by the rule $$$D_f(h)=\det J(f, h)$$$ for any $$$h\in A$$$, where $$$J(f, h)$$$ is the Jacobi matrix for $$$f, h$$$. The Lie algebra $$$W_2(\mathbb K)$$$ acts naturally on $$$A$$$ and on itself (by multiplication). We study relations between such actions from the viewpoint of Darboux polynomials of derivations from $$$W_2(\mathbb K)$$$. It is proved that for a Jordan chain $$$T(f_1)=\lambda f_1+f_2$$$, ..., $$$T(f_{k-1})=\lambda f_{k-1}+f_k$$$, $$$T(f_k)=\lambda f_k$$$ for a derivation $$$T\in W_2(\mathbb K)$$$ on $$$A$$$ there exists an analogous chain $$$[T,D_{f_1}]=(\lambda -\mathop{\mathrm{div}} T)D_{f_1} + D_{f_2}$$$, ..., $$$[T,D_{f_{k}}]=(\lambda -\mathop{\mathrm{div}} T)D_{f_{k}}$$$ in $$$W_2(\mathbb K)$$$. In case $$$A:=\mathbb K[x_1, \ldots , x_n]$$$, the action of normalizers of elements $$$f$$$ from $$$A$$$ in $$$W_n(\mathbb K)$$$ on the principal ideals $$$(f)$$$ is considered.

Keywords


Lie algebra; Jacobian derivation; centralizer; normalizer; annihilator

MSC 2020


Pri 17B66, Sec 17B80, 12H05

Full Text:

PDF

References


Bedratyuk L.P., Chapovsky Ie.Yu., Petravchuk A.P. "Centralizers of linear and locally nilpotent derivations", Ukrainian Math. J., 2023; 75(8): pp. 1043-1052. doi:10.3842/umzh.v75i8.7529

Chapovskyi Y., Efimov D., Petravchuk A. "Centralizers of elements in Lie algebras of vector fields with polynomial coefficients", Proc. Int. Geom. Center, 2021; 14(4): pp. 257-270. doi:10.15673/tmgc.v14i4.2153

Jiantao L., Xiankun D. "Pairwise Commuting Derivations of Polynomial Rings", Lin. Algebra Appl., 2012; 436(7): pp. 2375-2379. doi:10.1016/j.laa.2011.10.007

Llibre J., Zhang X. "Darboux theory of integrability in $$$\mathbb{C}^n$$$, taking into account the multiplicity", J. Diff. Eq., 2009; 246(2): pp. 541-551. doi:10.1016/j.bulsci.2009.06.002

Maciejewski A.J., Przybylska M. "Darboux polynomials and first integrals of natural polynomial Hamiltonian systems", Phys. Let. A, 2004; 326(3-4): pp. 219-226. doi:10.1016/j.physleta.2004.04.034

Nowicki A. Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.

Nowicki A., Nagata M. "Rings of constants for k-derivations in $$$k[x_1, \ldots , x_n]$$$", J. Math. Kyoto Univ., 1988; 28(1): pp. 111-118. doi:10.1215/kjm/1250520561

Petravchuk A.P., Iena O.G. "On centralizers of elements in the Lie algebra of the special Cremona group $$$\mathrm{SA}_2(\mathbb{K})$$$", J. Lie Theory, 2006; 16(3): pp. 561-567.




DOI: https://doi.org/10.15421/242408

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 O.Ya. Kozachok, A.P. Petravchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU