Action of derivations on polynomials and on Jacobian derivations
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Bedratyuk L.P., Chapovsky Ie.Yu., Petravchuk A.P. "Centralizers of linear and locally nilpotent derivations", Ukrainian Math. J., 2023; 75(8): pp. 1043-1052. doi:10.3842/umzh.v75i8.7529
Chapovskyi Y., Efimov D., Petravchuk A. "Centralizers of elements in Lie algebras of vector fields with polynomial coefficients", Proc. Int. Geom. Center, 2021; 14(4): pp. 257-270. doi:10.15673/tmgc.v14i4.2153
Jiantao L., Xiankun D. "Pairwise Commuting Derivations of Polynomial Rings", Lin. Algebra Appl., 2012; 436(7): pp. 2375-2379. doi:10.1016/j.laa.2011.10.007
Llibre J., Zhang X. "Darboux theory of integrability in $$$\mathbb{C}^n$$$, taking into account the multiplicity", J. Diff. Eq., 2009; 246(2): pp. 541-551. doi:10.1016/j.bulsci.2009.06.002
Maciejewski A.J., Przybylska M. "Darboux polynomials and first integrals of natural polynomial Hamiltonian systems", Phys. Let. A, 2004; 326(3-4): pp. 219-226. doi:10.1016/j.physleta.2004.04.034
Nowicki A. Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.
Nowicki A., Nagata M. "Rings of constants for k-derivations in $$$k[x_1, \ldots , x_n]$$$", J. Math. Kyoto Univ., 1988; 28(1): pp. 111-118. doi:10.1215/kjm/1250520561
Petravchuk A.P., Iena O.G. "On centralizers of elements in the Lie algebra of the special Cremona group $$$\mathrm{SA}_2(\mathbb{K})$$$", J. Lie Theory, 2006; 16(3): pp. 561-567.
DOI: https://doi.org/10.15421/242408
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 O.Ya. Kozachok, A.P. Petravchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.