Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics

V.F. Babenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-6677-1914
O.V. Kovalenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-0446-1125
N.V. Parfinovych (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-3448-3798

Abstract


In this article we obtain sharp Kolmogorov-type inequalities that estimate the uniform norm of a hypersingular integral operator
$$
D^{w,\Omega}_K f(x): = \int_{C} w(|t|_K) (f(x+t) - f(x))\Omega(t)dt, x\in C,
$$
using the uniform norm of the function $$$f$$$ and either the norm $$$\|f\|_{H^\omega_K(C)}$$$ determined by a modulus of continuity $$$\omega$$$, or the weighted integral norm $$$\| \Omega^{\frac 1p} \cdot |\nabla f|_{K^\circ}\|_{L_p(C)}$$$ of the gradient $$$\nabla f$$$. Here $$$C$$$ is a convex cone in $$${\mathbb R}^d$$$, $$$d\geq 2$$$, $$$\Omega\colon C\to\mathbb R$$$ is a non-negative homogeneous of degree 0 locally integrable function, $$$w\colon (0,\infty)\to [0,\infty)$$$ is some weight function, $$$|\cdot|_K$$$ is an arbitrary norm in $$${\mathbb R}^d$$$, $$$|\cdot|_{K^\circ}$$$ is its polar norm, and $$$p\in (d,\infty]$$$.


Keywords


Kolmogorov-type inequality; hypersingular integral operator; modulus of continuity

MSC 2020


26D10; 41A17; 41A44

Full Text:

PDF

References


Adams R.A., Fournier J.J.F. Sobolev Spaces, Elsevier Science, 2003.

Babenko V., Babenko Yu.V., Kovalenko O.V. "On multivariate Ostrowski type inequalities and their applications", Math. Ineq. Appl., 2020; 23(2): pp. 569-583. doi:10.7153/mia-2020-23-47

Babenko V., Kovalenko O., Parfinovych N. "On approximation of hypersingular integral operators by bounded ones", J. Math. Anal. Appl., 2022; 513(2): 126215. doi:10.1016/j.jmaa.2022.126215

Babenko V.F., Churilova M.S. "On inequalities of Kolmogorov type for derivatives of fractional order", Res. Math., 2001; 6: pp. 16-20. (in Ukrainian)

Babenko V.F., Churilova M.S. "Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic", Banach J. Math., 2007; 1: pp. 66-77. doi:10.15352/bjma/1240321556

Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, Kyiv, 2003. (in Russian)

Babenko V.F., Parfinovich N.V. "Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions and some applications", Proc. Steklov Inst. Math., 2012; 277: pp. 9-20. doi:10.1134/S0081543812050033

Federer H. Geometric Measure Theory, Springer, Berlin, 1969.

Kovalenko O. "On a general approach to some problems of approximation of operators", J. Math. Sci., 2024; 279: pp. 67-76. doi:10.1007/s10958-024-06987-4

Lieb E.H., Loss M. Analysis, Crm Proceedings & Lecture Notes. Am. Math. Soc., 2001.

Motornyi V.P., Babenko V.F., Dovgoshej A.A., Kuznetsova O.I. Approximation theory and Fourier analysis, Naukova dumka, Kyiv, 2010. (in Russian)

Parfinovich N.V. "Inequalities of Kolmogorov type for norms of hypersingular integrals with homogeneous characteristic of constant sign", Res. Math., 2015; 20: pp. 58-69. (in Russian) doi:10.15421/241507

Rockafellar R.T. Convex Analysis, Princeton Univ. Press, 1970.

Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.




DOI: https://doi.org/10.15421/242417

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 V.F. Babenko, O.V. Kovalenko, N.V. Parfinovych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU