Optimal recovery of operators in sequence spaces

V.F. Babenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-6677-1914
N.V. Parfinovych (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-3448-3798
D.S. Skorokhodov (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-8494-5885

Abstract


In this paper we solve the problem of optimal recovery of the operator $$$A_\alpha x= (\alpha_1x_1,\alpha_2x_2,\ldots)$$$ on the class $$$W^T_q = \{(t_1h_1,t_2h_2,\ldots)\,:\,\|h\|_{\ell_q}\le 1\}$$$, where $$$1\le q < \infty$$$ and $$$t_1\ge t_2\ge \ldots \ge 0$$$, and $$$\alpha_1t_1\ge\alpha_2t_2\ge\ldots\ge 0$$$ are given, in the space $$$\ell_q$$$. We solve this problem under assumption that $$$\lim_{n\to\infty}t_n = \lim_{n\to\infty}\alpha_nt_n = 0$$$. Information available about a sequence $$$x\in W^T_q$$$ is provided either (i) by an element $$$y\in\mathbb{R}^n$$$, $$$n\in\mathbb{N}$$$, whose distance to the first $$$n$$$ coordinates $$$\left(x_1,\ldots,x_n\right)$$$ of $$$x$$$ in the space $$$\ell_p^n$$$, $$$0 < p \le \infty$$$, does not exceed given $$$\varepsilon\ge 0$$$, or (ii) by a sequence $$$y\in\ell_p$$$ whose distance to $$$x$$$ in the space $$$\ell_r$$$ does not exceed $$$\varepsilon$$$. We show that the optimal method of recovery in this problem is either operator $$$\Phi^*_m$$$ with some $$$m\in\mathbb{Z}_+$$$ ($$$m\le n$$$ in case $$$y\in\ell^n_p$$$), defined by
$$
\Phi^*_m(y) = \left\{\alpha_1y_1\left(1 - \frac{\alpha_{m+1}^qt_{m+1}^q}{\alpha_1^qt_{1}^q}\right),\ldots,\alpha_my_m\left(1 - \frac{\alpha_{m+1}^qt_{m+1}^q}{\alpha_m^qt_{m}^q}\right),0,\ldots\right\},
$$
where $$$y\in\mathbb{R}^n$$$ or $$$y\in\ell_p$$$ or convex combination $$$(1-\lambda) \Phi^*_{m+1} + \lambda\Phi^*_{m}$$$, or the operator $$$A_\alpha$$$ itself.


Keywords


optimal recovery of operators; method of recovery; recovery with non-exact information; sequence spaces

MSC 2020


41A65; 46A45

Full Text:

PDF

References


Babenko V.F., Babenko Yu.V., Parfinovych N.V., Skorokhodov D.S. "Optimal recovery of integral operators and its applications", J. Complexity, 2016; 35: pp. 102-123. doi:10.1016/j.jco.2016.02.004

Babenko V.F., Gunko M.S., Parfinovych N.V. "Optimal Recovery of Elements of a Hilbert Space and their Scalar Products According to the Fourier Coefficients Known with Errors", Ukrainian Math. J., 2020; 72: pp. 853-870. doi:10.1007/s11253-020-01828-4

Babenko V.F., Parfinovych N.V., Skorokhodov D.S. "Optimal recovery of operator sequences", Matem. Studii, 2021; 56(2): pp. 193-207. doi:10.30970/ms.56.2.193-207

Magaril-Il'yaev G.G., Osipenko K.Y. "Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error", SB MATH, 2002; 193(3): pp. 387-407. doi:10.1070/SM2002v193n03ABEH000637

Mathé P., Pereverzev S.V. "Stable summation of orthogonal series with noisy coefficients", J. Approx. Theory, 2002; 118: pp. 66-80. doi:10.1006/jath.2002.3710




DOI: https://doi.org/10.15421/242418

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 V.F. Babenko, N.V. Parfinovych, D.S. Skorokhodov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU