Convergence criteria of branched continued fractions

I.B. Bilanyk (Ternopil Volodymyr Hnatiuk National Pedagogical University), https://orcid.org/0000-0002-1120-6317
D.I. Bodnar (West Ukrainian National University)
O.G. Vozniak (West Ukrainian National University)

Abstract


The convergence criteria of branched continued fractions with N branches of branching and branched continued fractions of the special form are analyzed. The classical theorems of convergence of continued fractions that have become the subject of multidimensional generalizations are formulated. The convergence conditions of branched continued fractions of the general form with positive elements are reviewed. The problem the solution of which caused changes in the structure of such branched continued fractions is formulated. A multidimensional generalization of the convergence criterion of branched continued fractions of the special form is stated. A multidimensional generalization of Worpitzky's and van Vleck's convergence theorems, the Śleszyński-Pringsheim theorem for the considered types of branched continued fractions are considered. The obtained multidimensional analogs of the theorems are analyzed, and other conditions of convergence, in particular, of branched continued fractions with real elements, multidimensional Leighton's and Wall's theorems, and others are given.


Keywords


continued fraction; branched continued fraction; branched continued fraction of the special form; convergence

MSC 2020


11A55; 11J70; 30B70; 40A15

Full Text:

PDF

References


Antonova T.M. "Multidimensional generalization of the theorem on parabolic domains of convergence of continued fractions", Mat. Met. Fiz.-Mekh. Polya, 1999; 42(4): pp. 7-12.

Antonova T.M., Bodnar D.I. "Convergence regions of branched continued fractions of the special form", Theory of functions and its applications: Proc. Inst. Math. NAS of Ukraine, 2000; 31: pp. 19-32.

Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. "An approximation to Appell's hypergeometric function $$$F_2$$$ by branched continued fraction", Dolomites Res. Notes Approx., 2024; 17(1): pp. 22-31. doi:10.14658/PUPJ-DRNA-2024-1-3

Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction $$$\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$$$, Ukrainian Math. J., 2020; 72(7): pp. 1018-1029. doi:10.1007/s11253-020-01841-7

Antonova T., Hladun V. "Some sufficient conditions for convergence and stability of branched continued fractions with alternating partial numerators", Mat. Metody ta Fiz.-Mekh. Polya, 2004; 47(4): pp. 27-35.

Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction whose partial denominators are equal to unity", Mat. Stud., 2020; 54(1): pp. 3-14. doi:10.30970/ms.54.1.3-14

Antonova T., Dmytryshyn R., Goran V. "On the analytic continuation of Lauricella-Saran hypergeometric function $$$F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})$$$", Mathematics, 2023; 11(21): 4487. doi:10.3390/math11214487

Antonova T., Dmytryshyn R., Sharyn S. "Branched continued fraction representations of ratios of Horn's confluent function $\mathrm{H}_6$", Constr. Math. Anal., 2023; 6(1): pp. 22-37. doi:10.33205/cma.1243021

Baker G.A, Graves-Morris P. "Padé Approximants", Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, 1996.

Baran O.E. "An analog of the Vorpits'kii convergence criterion for branched continued fractions of the special form", J. Math. Sci., 1998; 90(5): pp. 2348-2351. doi:10.1007/BF02433964

Baran O.E. "Some circular regions of convergence for branched continued fractions of a special form", J. Math. Sci., 2015; 205(4): pp. 491-500. doi:10.1007/s10958-015-2262-3

Baran O. "Some conditions of convergence of branched continued fractions with independent variables", J. Lviv Polytech. Nat. Univ. Appl. Math., 1998; 341: pp. 18-23.

Baran O.E. "Some convergence regions of branched continued fractions of special form", Carpathian Math. Publ., 2013; 5(1): pp. 4-13. (in Ukrainian) doi:10.15330/cmp.5.1.4-13

Bilanyk I. "A truncation error bound for some branched continued fractions of the special form", Mat. Stud., 2019; 52(2): pp. 115-123. doi:10.30970/ms.52.2.115-123

Bilanyk I., Bodnar D. "Convergence criterion for branched continued fractions of the special form with positive elements", Carpathian Math. Publ., 2017; 9(1): pp. 10-18. doi:10.15330/cmp.9.1.13-21

Bilanyk I.B., Bodnar D.I. "Estimation of the Rates of Pointwise and Uniform Convergence of Branched Continued Fractions with Inequivalent Variables", J. Math. Sci., 2022; 265(3): pp. 423-437. doi:10.1007/s10958-022-06062-w

Bilanyk I.B., Bodnar D.I. "On the convergence of branched continued fractions of a special form in angular domains", J. Math. Sci., 2020; 246: pp. 188-200. doi:10.1007/s10958-020-04729-w

Bilanyk I.B., Bodnar D.I. "Two-Dimensional Generalization of the Thron–Jones Theorem on the Parabolic Domains of Convergence of Continued Fractions", Ukrainian Math. J., 2023; 74(9): pp. 1317-1333. doi:10.1007/s11253-023-02138-1

Bodnar D.I. Branched Continued Fractions, Naukova Dumka, Kyiv, 1986. (in Russian)

Bodnar D.I. "On Koch's convergence criterion for branching continued fractions", J. Math. Sci., 1993; 67: pp. 3265-3268. doi:10.1007/BF01097727

Bodnar D. "Sur la convergence des fractions continues branchées avec des termes positives", Det Kong. Norske Vidensk. Selskab. Skrifter., 1994; 1: pp. 1-21. (in French)

Bodnar D.I. "Pringsheim type conditions of convergence for branched continued fractions", Ukrainian Math. J., 1989; 41(11): pp. 1553-1557. doi:10.1007/BF01056505

Bodnar D.I. "The investigation of one form of branched continued fractions", Continued Fractions and its Application: Pr. Inst. Matem. AS USSR, 1976. (in Ukrainian)

Bodnar D.I., Bilanyk I.B. "Parabolic convergence regions of branched continued fractions of the special form", Carpathian Math. Publ., 2021; 13(3): pp. 619-630. doi:10.15330/cmp.13.3.619-630

Bodnar D.I., Bodnar O.S., Bilanyk I.B. "A truncation error bound for branched continued fractions of the special form on subsets of angular domains", Carpathian Math. Publ., 2023; 15(2): pp. 437-448. doi:10.15330/cmp.15.2.437-448

Bodnar D.І., Bubniak M.M. "On convergence (2,1,...,1)-periodic branched continued fraction of the special form", Carpathian Math. Publ., 2015; 7(2): pp. 148-154. doi:10.15330/cmp.7.2.148-154

Bodnar D.I., Bubniak M.M. "Multidimensional generalization of the oval theorem for a periodic branched continued fraction of the special form", Proc. Inst. Math. NAS of Ukraine, 2014; 11(4): pp. 54-67.

Bodnar O., Dmytryshyn R. "On the convergence of multidimensional S-fractions with independent variables", Carpathian Math. Publ., 2018; 10(1): pp: 58-64. doi:10.15330/cmp.10.1.58-64

Bodnar D.I., Oleksiv I.Y. "On the convergence of branched continued fractions with nonnegative terms", Ukrainian Math. J., 1976; 28: pp. 290-293. doi:10.1007/BF01089177

Bodnar D.I., Voznyak O.H., Mykhal’chuk R.I. "A Criterion of Convergence of a Branched Continued Fraction with Positive Elements", J. Math. Sci., 2017; 222: pp. 70-80. doi:10.1007/s10958-017-3283-x

Bodnarchuk P.I., Skorobogatko V.Y. Branched continued fractions and their applications, Naukova Dumka, 1974.

Boltarovich E.A. "Analog of the Leighton-Wall convergence theorem for branched continued fractions", Methods of investigation of differential and integral operators, Naukova Dumka, 1989; pp. 32-36.

Cowling V., Leighton W., Thron W. "Twin convergence regions for continued fractions", Bull. Amer. Math. Soc., 1944; 50: pp. 351-357. doi:10.1090/S0002-9904-1944-08142-1

Cuyt A., Brevik P.V., Verdonk B., Waadeland H., Jones W.B. Handbook of continued fractions for special functions, Springer, 2008; 447 p.

Dmytryshyn R.I. "Convergence of some branched continued fractions with independent variables", Mat. Stud., 2017; 47(2): pp. 150-159. doi:10.15330/ms.47.2.150-159

Dmytryshyn R.I. "On the convergence criterion for branched continued fractions with independent variables", Carpathian Math. Publ., 2017; 9(2): pp. 120-127. doi:10.15330/cmp.9.2.120-127

Dmytryshyn R.I. On the convergence of multidimensional g-fractions, their properties, convergence theorem, NAIR, 2022.

Dmytryshyn R., Goran V. "On the analytic extension of Lauricella-Saran's hypergeometric function $$$F_K$$$ to symmetric domains", Symmetry, 2024; 16(2): p. 220. doi:10.3390/sym16020220

Dmytryshyn R., Sharyn S. "Approximation of Functions of Several Variables by Multidimensional A- and J-fractions with Independent Variables", arXiv, 2023. doi:10.48550/arXiv.2303.13136

Dzyadyk V.K. Introduction to the theory of uniform approximation of functions by polynomials, Nauka, 1977. (in Russian)

Hladun V.R. "Conditions of convergence and stability of branched continued fractions with negative partial numerators", Mat. Metody ta Fiz.-Mekh. Polya, 2003; 46(4): pp. 16-26.

Golub A.P. Generalized moment representations and Pade approximants, Inst. Math. NAS Ukraine, 2002.

Jones W.B., Thron W.J. Continued fractions: analytic theory and applications, Addison-Wesley Pub. Co., 1980.

Korneichuk N.P., Ligun A.A., Babenko V.F. Extremal Properties of Polynomials and Splines, Nova Science Pub. Inc., 1996.

Kuchmins'ka Kh.Yo. Two-dimensional continued fractions, Ya.S. Pidstryhach Inst. of appl. problems of mech. and math. of NAS Ukraine, Lviv, 2010; (in Ukrainian)

Lange L., Thron W. "A two-parameter family of best twin convergence regions for continued fractions", Math. Zeitschr., 1960; 73: pp. 295-311. doi:10.1007/BF01215312

Leighton W., Wall H.S. "On the transformation and convergence of continued fractions", American J. Math., 1936; 58(2): pp. 267-281. doi:10.2307/2371036

Lorentzen L., Waadeland H. Continued fractions. Vol. 1: Convergence theory, Atlantis Press/World Scientific, 2008.

McLaughlin J., Wyshinski Nancy J. "A convergence theorem for continued fractions of the form $$$K_{n=1}^{\infty} \frac{a_n}{1}$$$", J. Comput. Appl. Math., 2005; 179(12): pp. 255-262. doi:10.48550/arXiv.1812.11205

Nedashkovskyy N.A. Calculations with $$$\lambda$$$-matrices, Naukova dumka, 2007.

Nedashkovskyy M.O. "Convergence and computational stability of branched continued fractions with elements satisfying the Pringsheim type conditions", Questions of qualitative theory of differential equations and their applications, IMAN URSR, 1978; pp. 43-44.

Nedashkovskyy N. "Convergence criteria of matrix branched continued fractions", Mat. Metody ta Fiz.-Mekh. Polya, 2003; 46(4): pp. 50-56.

Perron O. Die Lehre von der Kettenbrühen, Teubner, 1957. (in German)

Syavavko M.S. Integral continued fractions, Naukova dumka, 1994.

Skorobogatko V.Ya. Theory of branching continued fractions and its application in computational mathematics, Nauka, 1983; (in Russian)

Skorobogatko V.Ya., Droniuk N.S., Bobyk O.I., Ptashnyk B.Y. "Branched continued fractions and their application", II scient. conf. of young mathematicians of Ukraine, Naukova dumka, 1966; pp. 561-565.

Stepanets A.I. Methods of approximation theory: In 2 parts, Inst. Mat. Nats. Akad. Nauk Ukraine, 2002.

Thron W.J. "Two families of twin convergence regions for continued fractions", Duke Math. J., 1943; 10(4): pp. 677-685. doi:10.1215/S0012-7094-43-01063-4

Wall H.S. Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.




DOI: https://doi.org/10.15421/242419

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 I.B. Bilanyk, D.I. Bodnar, O.G. Vozniak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU