Approximation of functions by linear methods in weighted Orlicz type spaces with variable exponent

S.O. Chaichenko (Donbas State Pedagogical University), https://orcid.org/0000-0002-2724-8749
A.L. Shidlich (Institute of Mathematics of the NAS of Ukraine, National University of Life and Environmental Sciences of Ukraine), https://orcid.org/0000-0002-6421-9277

Abstract


The approximation properties of various classical methods of linear summation of Fourier series in weighted spaces of Orlicz type with variable exponent are considered. In particular, in terms of approximation by such methods the constructive characterizations for classes of functions whose moduli of smoothness do not exceed some majorant are obtained.

Keywords


direct approximation theorem; inverse approximation theorem; modulus of smoothness; spaces with variable exponent; Zygmund means; Abel-Poisson means; Taylor-Abel-Poisson means; de la Vallée Poussin means

MSC 2020


41A65; 26A15; 41A25

Full Text:

PDF

References


Abdullayev F., Chaichenko S., Imash Kyzy M., Shidlich A. "Direct and inverse approximation theorems in the weighted Orlicz-type spaces with a variable exponent", Turkish J. Math., 2020; 44(1): pp. 284-299. doi:10.3906/mat-1911-3

Akgün R. "Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent", Ukrainian Math. J., 2011; 63(1): pp. 1-26. doi:10.1007/s11253-011-0485-0

Akgün R., Kokilashvili V. "On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces", Banach J. Math. Analys., 2011; 5(1): pp. 70-82.

Bari N.K. Trigonometric series, Gosizdat, 1961. (in Russian)

Bari N.K., Stechkin S.B. "Best approximations and differential properties of two conjugate functions", Trudy Moskovskogo Matematicheskogo Obshchestva 1956; 5: pp. 483-522.

Bugrov Ya.S. "Bernstein type inequalities and their application to the study of differential properties of solutions of differential equations of higher order", Mathematica (Cluj), 1968; 5(28): pp. 5-25.

Bugrov Ya.S. "Properties of solutions of differential equations of higher order in terms of weight classes", Trudy Matem. Inst. V.A. Steklova, 1972; 117: pp. 47-61. (in Russian)

Butzer P., Nessel J.R. Fourier analysis and approximation, Basel, Birhäuser, 1971.

Chaichenko S., Savchuk V., Shidlich A. "Approximation of functions by linear summation methods in the Orlicz-type spaces", J. Math. Sci. (US), 2020; 249(5): pp. 705-719. doi:10.1007/s10958-020-04967-y

DeVore R.A., Lorentz G.G. Constructive Approximation, Berlin, Springer, 1993.

Guven A., Israfilov D.M. "Approximation by means of Fourier trigonometric series in weighted Orlicz spaces", Adv. Stud. Contemp. Math. (Kyungshang), 2009; 19(2): pp. 283-295.

Hardy G.H., Littlewood J.E. "Some properties of fractional integrals. II", Math. Zeitsch., 1932; 34(1): pp. 403-439. doi:10.1007/BF01180596

Jafarov S.Z. "Linear methods for summing Fourier series and approximation in weighted Lebesgue spaces with variable exponents", Ukrainian Math. J., 2015; 66(6): pp. 1509-1518. doi:10.1007/s11253-015-1027-y

Jafarov S.Z. "Linear methods of summing Fourier series and approximation in weighted Orlicz spaces", Turkish J. Math., 2018; 42(6): pp. 2916-2925. doi:10.3906/mat-1804-31

Kokilashvili V., Samko S.G. "Operators of harmonic analysis in weighted spaces with non-standard growth", J. Math. Analys. Appl., 2009; 352: pp. 15-34. doi:10.1016/j.jmaa.2008.06.056

Móricz F. "Absolutely convergent Fourier series and function classes", J. Math. Anal. Appl., 2006; 324: pp. 1168-1177. doi:10.1016/j.jmaa.2005.12.051

Móricz F. "Absolutely convergent Fourier series and generalized Lipschitz classes of functions", Colloq. Math., 2008; 113(1): pp. 105-117. doi:10.4064/cm113-1-7

Móricz F. "Absolutely convergent Fourier series and function classes. II", J. Math. Analys. Applic., 2008; 342(2): pp. 1246-1249. doi:10.1016/j.jmaa.2007.12.055

Móricz F. "Higher order Lipschitz classes of functions and absolutely convergent Fourier series", Acta Math. Hungarica, 2008; 120(4): pp. 355-366. doi:10.1007/s10474-007-7141-z

Prestin J., Savchuk V.V., Shidlich A.L. "Direct and inverse approximation theorems of $$$2\pi$$$-periodic functions by Taylor-Abel-Poisson means", Ukrainian Math. J., 2017; 69(5): pp. 766-781.

Prestin J., Savchuk V.V., Shidlich A.L. "Approximation theorems for multivariate Taylor-Abel-Poisson means", Stud. Univ. Babeş-Bolyai Math., 2019; 64(3): pp. 313-329. doi:10.24193/subbmath.2019.3.03

Prestin J., Savchuk V.V., Shidlich A.L. "Approximation on hexagonal domains by Taylor-Abel-Poisson means", J. Math. Analys. Applic., 2024; 529(2): 127536. doi:10.1016/j.jmaa.2023.127536

Rudin W. Function theory in polydiscs, New York-Amsterdam, W.A. Benjamin Inc., 1969.

Savchuk V.V. "Approximation of holomorphic functions by Taylor-Abel-Poisson means", Ukrainian Math. J., 2007; 59(9): pp. 1397-1407. doi:10.1007/s11253-007-0094-0

Savchuk V.V., Shidlich A.L. "Approximation of functions of several variables by linear methods in the space $$$S^p$$$", Acta Sci. Math., 2014; 80(3-4): pp. 477-489. doi:10.14232/actasm-012-837-8

Sunouchi G. "Derivatives of a trigonometric polynomial of best approximation", Internat. Series Numer. Math., Basel-Stuttgart, Birkhäuser Verlag, 1969; 10: pp. 233-241. doi:10.1007/978-3-0348-5869-4_20

Stepanets A.I. "Approximation characteristics of the spaces $$${\mathcal S}^p_\varphi$$$", Ukrainian Math. J., 2001; 53(3): pp. 446-475. doi:10.1023/A:1013307912783

Stepanets A.I. Methods of approximation theory, Leiden, VSP, 2005.

Zygmund A. Trigonometric series, Mir, 1965; (in Russian)




DOI: https://doi.org/10.15421/242420

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 S.O. Chaichenko, A.L. Shidlich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU