On the branched continued fraction expansions of the complete group of ratios of the generalized hypergeometric function $$$_4F_3$$$

Y. Lutsiv (Vasyl Stefanyk Precarpathian National University)
T. Antonova (Lviv Polytechnic National University), https://orcid.org/0000-0002-0358-4641
R. Dmytryshyn (Vasyl Stefanyk Precarpathian National University), https://orcid.org/0000-0003-2845-0137
M. Dmytryshyn (West Ukrainian National University), https://orcid.org/0000-0002-0609-9764

Abstract


The paper considers the classical problem of the rational approximation of analytic functions of complex variable, in particulary, to issues that arise when constructing branched continued fraction expansions for generalized hypergeometric functions. Using combinations of three- and four-term recurrence relations of the generalized hypergeometric function $$$_4F_3$$$, we constructed the formal branched continued fraction expansions of sixteen ratios of this function. These sixteen ratios are the complete group of ratios of the generalized hypergeometric function $$$_4F_3$$$. This means that each of these ratios has a formal branched continued fraction expansion that uses all of these ratios.

Keywords


hypergeometric function; branched continued fraction; approximation by rational functions

MSC 2020


33C20; 32A17; 41A20

Full Text:

PDF

References


Andrews G.E., Askey R., Roy R. Special functions, Cambridge Univ. Press, 1999.

Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. "An approximation to Appell's hypergeometric function $$$F_2$$$ by branched continued fraction", Dolomites Res. Notes Approx., 2024; 17(1): pp. 22-31. doi:10.14658/PUPJ-DRNA-2024-1-3

Antonova T., Dmytryshyn R., Goran V. "On the analytic continuation of Lauricella-Saran hypergeometric function $$$F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})$$$", Mathematics, 2023; 11(21): 4487. doi:10.3390/math11214487

Antonova T., Dmytryshyn R., Kril P., Sharyn S. "Representation of some ratios of Horn's hypergeometric functions $$$\mathrm{H}_7$$$ by continued fractions", Axioms, 2023; 12(8): 738. doi:10.3390/axioms12080738

Antonova T., Dmytryshyn R., Kurka R. "Approximation for the ratios of the confluent hypergeometric function $$$\Phi_D^{(N)}$$$ by the branched continued fractions", Axioms, 2023; 11(9): 426. doi:10.3390/axioms11090426

Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. "On some branched continued fraction expansions for Horn's hypergeometric function $$$H_4(a,b;c,d;z_1,z_2)$$$ ratios", Axioms, 2023; 12(3): 299. doi:10.3390/axioms12030299

Antonova T., Dmytryshyn R., Sharyn S. "Branched continued fraction representations of ratios of Horn's confluent function $\mathrm{H}_6$", Constr. Math. Anal., 2023; 6(1): pp. 22-37. doi:10.33205/cma.1243021

Antonova T., Dmytryshyn R., Sharyn S. "Generalized hypergeometric function $$${}_3F_2$$$ ratios and branched continued fraction expansions", Axioms, 2021; 10(4): p. 310. doi:10.3390/axioms10040310

Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction $$$\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$$$, Ukrainian Math. J., 2020; 72(7): pp. 1018-1029. doi:10.1007/s11253-020-01841-7

Antonova T.M., Dmytryshyn R.I. "Truncation error bounds for branched continued fraction whose partial denominators are equal to unity", Mat. Stud., 2020; 54(1): pp. 3-14. doi:10.30970/ms.54.1.3-14

Antonova T.M. "On structure of branched continued fractions", Carpathian Math. Publ., 2024; 16(2): pp. 391-400. doi:10.15330/cmp.16.2.391-400

Antonova T.M., Sus' O.M. "Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions", J. Math. Sci., 2018; 228(1): pp. 1-10. doi:10.1007/s10958-017-3601-3

Antonova T.M., Sus' O.M., Vozna S.M. "Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions", Ukrainian Math. J., 2022; 74(4): pp. 501-518. doi:10.1007/s11253-022-02079-1

Bailey W.N. Generalized hypergeometric series, Hafner, 1972.

Bodnar D.I., Bilanyk I.B. "Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables", J. Math. Sci., 2022; 265(3): pp. 423-437. doi:10.1007/s10958-022-06062-w

Bodnar D.I., Bilanyk I.B. "Parabolic convergence regions of branched continued fractions of the special form", Carpathian Math. Publ., 2021; 13(3): pp. 619-630. doi:10.15330/cmp.13.3.619-630

Bodnar D.I., Bilanyk I.B. "Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions", Ukrainian Math. J., 2023; 74(9): pp. 1317-1333. doi:10.1007/s11253-023-02138-1

Bodnar D.I., Bodnar O.S., Bilanyk I.B. "A truncation error bound for branched continued fractions of the special form on subsets of angular domains", Carpathian Math. Publ., 2023; 15(2): pp. 437-448. doi:10.15330/cmp.15.2.437-448

Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. "On the convergence of multidimensional S-fractions with independent variables", Carpathian Math. Publ., 2020; 12(2): pp. 353-359. doi:10.15330/cmp.12.2.353-359

Bodnar D.I., Manzii O.S. "Expansion of the ratio of Appel hypergeometric functions $$$F_3$$$ into a branching continued fraction and its limit behavior", J. Math. Sci., 2001; 107(1): pp. 3550-3554. doi:10.1023/A:1011977720316

Dmytryshyn R.I. "Associated branched continued fractions with two independent variables", Ukrainian Math. J., 2015; 66(9): pp. 1312-1323. doi:10.1007/s11253-015-1011-6

Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. "Numerical stability of the branched continued fraction expansion of Horn's hypergeometric function $$$H_4$$$", Mat. Stud., 2024; 61(1): pp. 51-60. doi:10.30970/ms.61.1.51-60

Dmytryshyn R.I. "Convergence of multidimensional A- and J-fractions with independent variables", Comput. Methods Funct. Theory, 2022; 22(2): pp. 229-242. doi:10.1007/s40315-021-00377-6

Dmytryshyn R., Goran V. "On the analytic extension of Lauricella-Saran's hypergeometric function $$$F_K$$$ to symmetric domains", Symmetry, 2024; 16(2): p. 220. doi:10.3390/sym16020220

Dmytryshyn R., Lutsiv I.-A., Bodnar O. "On the domains of convergence of the branched continued fraction expansion of ratio $$$H_4(a,d+1;c,d;\mathbf{z})/H4(a,d+2;c,d+1;\mathbf{z})$$$", Res. Math., 2023; 31(2): pp. 19-26. doi:10.15421/242311

Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. "On the analytic extension of the Horn's hypergeometric function $$$H_4$$$", Carpathian Math. Publ., 2024; 16(1): pp. 32-39. doi:10.15330/cmp.16.1.32-39

Dmytryshyn R.I., Lutsiv I.-A.V. "Three- and four-term recurrence relations for Horn's hypergeometric function $$$H_4$$$", Res. Math., 2022; 30(1): pp. 21-29. doi:10.15421/242203

Dmytryshyn R.I. "The multidimensional generalization of g-fractions and their application", J. Comp. Appl. Math., 2004; 164-165: pp. 265-284. doi:10.1016/S0377-0427(03)00642-3

Hladun V.R., Bodnar D.I., Rusyn R.S. "Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements", Carpathian Math. Publ., 2024; 16(1): pp. 16-31. doi:10.15330/cmp.16.1.16-31

Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L. "On convergence of function $$$F_4(1, 2; 2, 2; z_1, z_2)$$$ expansion into a branched continued fraction", Math. Model. Comput., 2022; 9(3): pp. 767-778. doi:10.23939/mmc2022.03.767

Hladun V., Rusyn R., Dmytryshyn M. "On the analytic extension of three ratios of Horn's confluent hypergeometric function $$$\mathrm{H}_7$$$", Res. Math., 2024; 32(1): pp. 60-70. doi:10.15421/242405

Hladun V.R. "Some sets of relative stability under perturbations of branched continued fractions with complex elements and a variable number of branches", J. Math. Sci., 2016; 215: pp. 11-25. doi:10.1007/s10958-016-2818-x

Lima H. "Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series", Adv. Appl. Math., 2023; 147: 102505. doi:10.1016/j.aam.2023.102505

Manzii O.S. "On the approximation of an Appell hypergeometric function by a branched continued fraction", J. Math. Sci., 1998; 90(5): pp. 2376-2380. doi:10.1007/BF02433970

Petreolle P., Sokal A.D., Zhu B.X. "Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficient wise Hankel-total positivity", arXiv, 2020. arXiv:1807.03271

Slater L.J. Generalized hypergeometric functions, Cambridge Univ. Press, 1966.




DOI: https://doi.org/10.15421/242423

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Y. Lutsiv, T. Antonova, R. Dmytryshyn, M. Dmytryshyn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU