Best approximations for the weighted combination of the Cauchy-Szegö kernel and its derivative in the mean
Abstract
In this paper, we study an extremal problem involving best approximation in the Hardy space $$$H^1$$$ on the unit disk $$$\mathbb D$$$. Specifically, we consider weighted combinations of the Cauchy-Szegö kernel and its derivative, parameterized by an inner funtion $$$\varphi$$$ and a complex number $$$\lambda$$$, and provide explicit formulas for the best approximation $$$e_{\varphi,z}(\lambda)$$$ by the subspace $$$H^1_0$$$. We also describe the extremal functions associated with this approximation. Our main result gives the form of $$$e_{\varphi,z}(\lambda)$$$ as a function of $$$\lambda$$$ and shows that, for a sufficiently large module of $$$\lambda$$$, the extremal function is linear in $$$\lambda$$$ and unique. We apply this result to establish a sharp inequality for holomorphic functions in the unit disk, leading to a new version of the Schwarz-Pick inequality.
Keywords
MSC 2020
Full Text:
PDFReferences
Macintyre A.J., Rogosinski W.W. "Extremum problems in the theory of analytic functions", Acta Math., 1950; 82: pp. 275-325. doi:10.1007/BF02398280
Al'per S.Ya. "Asymptotic values of best approximation of analytic functions in a complex domain", Uspekhi Mat. Nauk, 1959; 14:1(85): pp. 131-134. (in Russian)
Al'per S.Ya. "On the best mean first-degree approximation of analytic functions on circles", Dokl. Akad. Nauk SSSR, 1963; 153: pp. 503-506. (in Russian)
Stepanets A.I., Savchuk V.V. "Approximations of Cauchy-type integrals", Ukrainian Math. J., 2002; 54: pp. 869-911. doi:10.1023/A:1021699817374
Savchuk V.V. "Best linear methods of approximation of functions of the Hardy class $$$H^p$$$", Ukrainian Math. J., 2003; 55: pp. 1110-1118. doi:10.1023/B:UKMA.0000010609.60573.05
Savchuk V.V. "Best approximations of reproducing kernels of spaces of analytic functions", Ukrainian Math. J., 2004; 56: pp. 1127-1143. doi:10.1007/PL00022187
Savchuk V.V. "Best approximations by holomorphic functions. Applications to best polynomial approximations of classes of holomorphic functions", Ukrainian Math. J., 2007; 59: pp. 1163-1183. doi:10.1007/s11253-007-0078-0
Savchuk V.V. "Best linear approximation methods and optimal orthonormal systems in the Hardy space", Ukrainian Math. J., 2008; 60: pp. 730-743. doi:10.1007/s11253-008-0091-y
Savchuk V.V., Chaichenko S.O. "Best approximations for the Cauchy kernel on the real axis", Ukrainian Math. J., 2015; 66: pp. 1731-1741. doi:10.1007/s11253-015-1047-7
Chaichenko S.O. "Approximation of Bergman kernels by rational functions with fixed poles", Ukrainian Math. J., 2018; 69: pp. 1835-1844. doi:10.1007/s11253-018-1473-4
Savchuk V.V. "Best approximations of the Cauchy-Szegö kernel in the mean on the unit circle", Ukrainian Math. J., 2018; 70: pp. 817-825. doi:10.1007/s11253-018-1535-7
Savchuk V.V., Chaichenko S.O., Savchuk M.V. "Approximation of bounded holomorphic and harmonic functions by Fejér means", Ukrainian Math. J., 2019; 71: pp. 589-618. doi:10.1007/s11253-019-01665-0
Savchuk V.V., Chaichenko S.O., Shydlich A.L. "Extreme problems of weight approximation on the real axis", J. Math. Sci. (N.Y.), 2024; 279: pp. 104-114. doi:10.1007/s10958-024-06991-8
Garnett J. Bounded Analytic Functions, Springer, New York, 2007.
DOI: https://doi.org/10.15421/242426
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 V.V. Savchuk, M.V. Savchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.