Approximate solution to a mixed boundary problem for the elastic semi-infinite layer
Abstract
Keywords
MSC 2020
Full Text:
PDFReferences
Gradshtein I.S., Ryzhik I.M. Tables of integrals, sums, series and products, Fizmatgiz, 1962. (in Russian)
Grinchenko V.T., Ulitko A.F. Spatial Problems of the Theory of Elasticity and Plasticity. Equilibrium of elastic bodies of canonical form, Naukova Dumka, 1985. (in Russian)
Meleshko V.V. "Selected topics in the history of the two-dimensional biharmonic problem", Appl. Mech. Rev., 2003; 56(1): pp. 33-85. doi:10.1115/1.1521166
Miroshnikov V.Yu. "The study of the second main problem of the theory of elasticity for a layer with a cylindrical cavity", Str. Mater. Theor. Struct., 2019; 102: pp. 77-90. doi:10.32347/2410-2547.2019.102.77-90
Nikolaev A.G., Protsenko V.S. Generalized Fourier method in spatial problems of the theory of elasticity, Kharkiv National Aerospace Univ., 2010.
Popov G.Ya. "Reduction of equations of motion of an elastic medium to one independent and two coupled equations", Doklady Physics, 2002; 47: pp. 397-400. doi:10.1134/1.1484414
Popov G.Ya. "New Transforms for the Resolving Equations in Elastic Theory and New Integral Transforms, with Applications to Boundary-Value Problems of Mechanics", Int. Appl. Mech., 2003; 39: pp. 1400-1424. doi:10.1023/B:INAM.0000020824.87396.ea
Popov G.Ya., Vaysfeld N.D. "On a new approach to the lamb-problem solution", Doklady Physics, 2010; 55: pp. 246-251. doi:10.1134/S1028335810050101
Popov G.Ya., Abdimanapov S.A., Efimov V.V. Green’s functions and matrices of one-dimensional boundary value problems, Rauan, Almaty, 1999.
Prudnikov A.P., Brichkov Yu.A., Marichev O.I. Integrals and Series. Additional Chapters, Nauka, 1986. (in Russian)
Tokovyy Y., Lozynskyy Y., Ma C.C. "Two-Dimensional Thermal Stresses and Displacements in an Arbitrarily Inhomogeneous Elastic Layer", Appl. Mech. Mater., 2014; 627: pp. 141-144. doi:10.4028/www.scientific.net/amm.627.141
Vaysfeld N.D., Popov G.Ya. "Mixed boundary value problem of elasticity for a quarter space", Mech. Solids, 2009; 44: pp. 712-728. doi:10.3103/S0025654409050082
Vaysfel’d N., Popov G., Reut V. "The axisymmetric contact interaction of an infinite elastic plate with an absolutely rigid inclusion", Acta Mech., 2015; 226: pp. 797-810. doi:10.1007/s00707-014-1229-7
Vaysfeld N.D., Fesenko A.A. Mixed problems of the elasticity theory for semi-infinite layer, Astroprint, 2019.
Uflyand Ya.S. Survey of Articles on the Applications of Integral Transforms in the Theory of Elasticity, North Carolina State Univ. at Raleigh Applied Mathematics Research Group, 1965; pp. 342-383.
Fesenko A.A. "Mixed Problems of Stationary Heat Conduction and Elasticity Theory for a Semiinfinite Layer", J. Math. Sci., 2015; 205: pp. 706-718. doi:10.1007/s10958-015-2277-9
DOI: https://doi.org/10.15421/242506
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 A.A. Fesenko

This work is licensed under a Creative Commons Attribution 4.0 International License.