Inequalities for $$$\Lambda$$$-derivatives of functions defined on a metric space and some of their applications

V. Babenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0001-6677-1914
V. Kolesnyk (Drake University)
O. Kovalenko (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-0446-1125
N. Parfinovych (Oles Honchar Dnipro National University), https://orcid.org/0000-0002-3448-3798

Abstract


We introduce a concept of a $$$\Lambda$$$-derivative operator, which is a certain generalization of hypersingular integral operators, which in turn are used in the definitions of the Marchaud and the Riesz fractional derivatives. We study the problem of sharp Kolmogorov-type inequalities in spaces of continuous bounded functions equipped with a seminorm defined by a certain modulus of continuity for such kind of operators. We also consider an application of the obtained Kolmogorov-type inequality to the Stechkin problem about the best approximation of an operator by bounded ones.

Keywords


Kolmogorov-type inequality; inequality for derivatives; modulus of continuity; fractional derivative; hypersingular integral operator; Stechkin problem

MSC 2020


Pri 26D10, Sec 41A17, 41A44, 41A65

Full Text:

PDF

References


Babenko V., Babenko Yu., Kovalenko O. "On multivariate Ostrowski type inequalities and their applications", Math. Ineq. Appl., 2020; 23(2): pp. 569-583. doi:10.7153/mia-2020-23-47

Babenko V., Kofanov V., Kogut P., Kovalenko O., Parfinovych N. Extremal Problems of Analysis and Applications, Synthesis Lectures on Mathematics & Statistics, Springer Cham., 2025.

Babenko V., Kovalenko O., Parfinovych N. "On approximation of hypersingular integral operators by bounded ones", J. Math. Anal. Appl., 2022; 513(2): p. 126215. doi:10.1016/j.jmaa.2022.126215

Babenko V.F. "Inequalities of Kolmogorov type for fractional derivatives and their applications", Problems and methods: Mathematics, Mechanics, Cybernetics, Vol. 4, Chapter 2. Naukova knyga, 2012.

Babenko V.F., Churilova M.S. "Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic", Banach J. Math., 2007; 1: pp. 66-77. doi:10.15352/bjma/1240321556

Babenko V.F., Kovalenko O.V., Parfinovych N.V. "Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics", Res. Math., 2024; 32(2): pp. 21-39. doi:10.15421/242417

Babenko V.F., Parfinovich N.V., Pichugov S.A. "Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions", Ukrainian Math. J., 2010; 62(3): pp. 301-314. doi:10.1007/s11253-010-0358-y

Kolmogorov A.N. "Une generalization de l’inegalite de M.J. Hadamard entre les bornes superieures des derivees successives d’une function", C. r. Acad. sci. Paris, 1938; 207: pp. 764-765. (in French)

Landau E. "Über einen satz des herrn Littlewood", Rend. Circ. Mat. Palermo, 1913; 35: pp. 265-276. (in German) doi:10.1007/BF03015606

Parfinovych N.V., Pylypenko V.V. "Kolmogorov inequalities for norms of Marchaud-type fractional derivatives of multivariate functions", Res. Math., 2020; 28(2): pp. 10-23. doi:10.15421/242007

Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Sci. Publ., 1993.

Stechkin S.B. "Best approximation of linear operators", Math. Notes, 1967; 1(2): pp. 91-99. doi:10.1007/BF01268056


Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications, Naukova dumka, 2003.

Babenko V.F., Levchenko D.A. "Kolmogorov type inequalities for hypersingular integrals with sign-alternating characteristic", Res. Math., 2010; 15: pp. 18-27.




DOI: https://doi.org/10.15421/242511

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 V. Babenko, V. Kolesnyk, O. Kovalenko, N. Parfinovych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU