On the growth of gap power series of homogeneous polynomials

A.I. Bandura (Ivano-Frankivsk National Technical University of Oil and Gas), https://orcid.org/0000-0003-0598-2237
M.M. Dolynyuk (Markiyan Shashkevych Brody Profess. Pedagog. College), https://orcid.org/0009-0007-3936-8303
O.B. Skaskiv (Ivan Franko National University of Lviv), https://orcid.org/0000-0001-5217-8394

Abstract


Let $$$f$$$ be an entire functions $$$f\colon \mathbb{C}^{p}\to\mathbb{C}$$$, represented by power series of the form
$$f(z)=\sum\limits_{k=0}^{+\infty} P_k(z), z\in\mathbb{C}^p$$
where $$$P_0(z)\equiv a_{0}\in\mathbb{C}$$$, $$$P_k(z)=\sum\limits_{\|n\|=\lambda_k} a_{n}z^{n}$$$ is a homogeneous polynomial of degree $$$\lambda_k\in\mathbb{N}$$$ and $$$ 0=\lambda_0< \lambda_k\uparrow +\infty$$$ ($$$1\leq k\uparrow +\infty$$$).
In this paper, we present conditions such that the equality
$$\rho_f:=\varlimsup\limits_{r\to +\infty}\frac{\ln\ln M_f(r)}{\ln r}=\rho(f,\mathbf{K}):=\varlimsup\limits_{r\to +\infty}\frac{\ln\ln M_f(r,\mathbf{K})}{\ln r}$$
holds, where
$$M_f(r):=\sup\{|f(z)|\colon |z|\leq r\},\quad M_f(r,\mathbf{K}):=\sup\{|f(z)|\colon z\in \mathbf{K},|z|\leq r\}$$
and $$$\mathbf{K}$$$ is a real cone in $$$\mathbb{C}^p$$$ such that the set $$$\mathbb{C}\overline{\mathbf{K}}$$$ is non-pluripolar in $$$\mathbb{C}^p$$$.


Keywords


entire functions of several variables; gap power series; homogeneous polynomial

MSC 2020


Pri 30B20, Sec 30D20, 18B30, 54B30

Full Text:

PDF

References


Anderson J.M., Binmore K.G. "Closure Theorems with Applications to Entire Functions with Gaps", Trans. Amer. Math. Soc., 1971; 161: pp. 381-400. doi:10.2307/1995948

Anderson J.M., Binmore K.G. "On entire functions with gap power series", Glasgow Math. J., 1971; 12(2): pp. 89-97. doi:10.1017/S0017089500001191

Deng G.T. "Gap theorems for entire functions", Kodai Math. J., 1994; 17(1): pp. 125-132. doi:10.2996/kmj/1138039902

Edrei A. "Gap and density theorems for entire functions", Scripta Math., 1957; 23: pp. 117-141.

Downarowicz M., Janik A. "On the growth of entire functions of n complex variables", Ann. Polon. Math., 1985; 46(1): pp. 81-84. doi:10.4064/ap-46-1-81-84

Gaier D. "On the Coefficients and the Growth of Gap Power Series", SIAM J. Numer. Analys., 1966; 3(2): pp. 248-265. doi:10.1137/0703019

Kühn J. "Über das Wachstum reeller Potenzreihen mit weniger Vorzeichenwechseln und über das Wachstum ganzer Dirichlet-Reihen", Mitt. Math. Sem. Giessen, 1967; 75. (in German)

Kuryliak A.O., Skaskiv O.B., Stasiv N.Y. "On convergence of random multiple Dirichlet series", Matem. Stud., 2018; 49(2): pp. 122-137. doi:10.15330/ms.49.2.122-137

Lelong P., Gruman L. Entire functions of several complex variables, Springer Verl., 1986.

Macintyre A.J. "Asymptotic paths of integral functions with gap power series", Proc. London Math. Soc., 1952; 3-2: pp. 286-296. doi:10.1112/plms/s3-2.1.286

Siciak J. "Extremal plurisubharmonic functions and capacities in $$$\mathbb{C}^n$$$", Lecture Notes of the Sophia Univ, 1982; pp. 1-97.

Siciak J. "Extremal plurisubharmonic functions in $$$C^N$$$", Ann. Polon. Math., 1981; 39(1): pp. 175-211. doi:10.4064/AP-39-1-175-211

Shapovalovska L.O., Skaskiv O.B. "On the radius of convergence of random gap power series", Int. J. Math. Anal., 2015; 9(37-40): pp. 1889-1893. doi:10.12988/ijma.2015.53115

Skaskiv O.B. "On the Polya conjecture concerning the maximum and minimum of the modulus of an entire function of finite order given by a lacunary power series", Analys. Math., 1990; 16(2): pp. 143-157. doi:10.1007/BF01907542

Sheremeta M.N. "Growth on the real axis of an entire function represented by a Dirichlet series", Math. Notes, 1983; 33: pp. 119-124. doi:10.1007/BF01160374




DOI: https://doi.org/10.15421/242512

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 A.I. Bandura, M.M. Dolynyuk, O.B. Skaskiv

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU