Best weighted approximation of some kernels on the real axis

S.O. Chaichenko (Donbas State Pedagogical University), https://orcid.org/0000-0002-2724-8749
V.V. Savchuk (Institute of Mathematics of NAS of Ukraine), https://orcid.org/0000-0002-6713-4471
A.L. Shydlich (Institute of Mathematics of the NAS of Ukraine, National University of Life and Environmental Sciences of Ukraine), https://orcid.org/0000-0002-6421-9277

Abstract


We calculate the exact value and find the polynomial of the best weighted polynomial approximation of kernels of the form $$$\frac {A+Bt}{(t^2+\lambda^2)^{s+1}}$$$, where $$$A$$$ and $$$B$$$ are fixed complex numbers, $$$\lambda>0$$$, $$$s\in {\mathbb N}$$$, in the mean square metric.

Keywords


Takenaka-Malmqvist system; Blaschke product; best weighted approximation

MSC 2020


Pri 41A10, Sec 30J10, 41A81

Full Text:

PDF

References


Ahiezer N.I. Lectures on the Theory of Approximation, 1956.

Bernstein S.N. Extremal properties of polynomials and best approximation, Jerusalem Acad. Press, 1964.

Dzhrbashyan M.M. "Biorthogonal systems of rational functions and the best approximation of the Cauchy kernel on the real axis", Math. ussr-Sb., 1974; 24(3): pp. 409-433.

Dzyadyk V.K., Shevchuk I.A. Theory of uniform approximation of functions by polynomials, Walter de Gruyter, 2008. doi:10.1515/9783110208245

Kharkevych Yu.I., Shutovskyi A.M. "Approximation of functions from Hölder class by biharmonic Poisson integrals", Carpathian Math. Publ., 2024; 16(2): pp. 631-637. doi:10.15330/cmp.16.2.631-637

Kryloff W. "Über Funktionen, die in der Halbebene regulär sind", Recueil Mathématique. Nouvelle Série, 1939; 6: pp. 95-138. (in German) See also: Krylov V.I. "On functions regular in a half-plane", Translations. Series 2. Amer. Math. Soc., 1963; 32: pp. 37-81.

Malmquist F. "Sur la détermination d'une classe de fonctions analytiques par leurs valeurs dans un ensemble donné de points", Compt. Rend. du Sixième Congrès des mathêmaticiens scandinaves, 1925; 26: pp. 253-259. (in French)

Mashreghi J. Representation theorem in Hardy spaces, Cambridge Univ. Press, 2009.

Savchuk V.V., Savchuk M.V. "Best approximations for the weighted combination of the Cauchy-Szegö kernel and its derivative in the mean", Res. Math., 2024; 32(2): pp. 155-161. doi:10.15421/242426

Savchuk V.V., Chaichenko S.O. "Best approximations for the Cauchy kernel on the real axis", Ukrainian Math. J., 2015; 66: pp. 1731-1741. doi:10.1007/s11253-015-1047-7

Savchuk V.V., Chaichenko S.O., Shydlich A.L. "Extreme problems of weight approximation on the real axis", J. Math. Sci. (N.Y.), 2024; 279(1): pp. 129-145. doi:10.1007/s10958-024-06991-8

Shutovskyi A.M., Zhyhallo K.M. "On polyharmonic Poisson-Taylor operators", J. Math. Sci., 2025; 288(5): pp. 639-649. doi:10.1007/s10958-025-07748-7

Stepanets A.I. Methods of approximation theory, VSP, 2005. doi:10.1007/10.1515/9783110195286

Takenaka S. "On the orthogonal functions and a new formula of interpolation", Japan. J. Math., 1925; 2: pp. 129-145. doi:10.4099/jjm1924.2.0_129

Voskanyan A.A. "On some extremal problems of approximation theory on the entire real axis", Izv. Akad. Nauk Armyan. ssr, 1979; 14(2): pp. 107-123. (in Armenian)




DOI: https://doi.org/10.15421/242513

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 S.O. Chaichenko, V.V. Savchuk, A.L. Shydlich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU